Publications by authors named "Ivan Petrovic"

Article Synopsis
  • - A 20-year-old man with drug-resistant epilepsy developed multiple intracerebral hemorrhages after receiving stereo-EEG electrodes and experiencing a lumbar spinal tap, with a history of heavy use of nicotine pouches.
  • - Genetic testing revealed a mutation in the COL4A2 gene, which is linked to collagen production and has previously been associated with hemorrhage risks, raising concerns about its role in the patient's complication.
  • - The study suggests that the combination of the COL4A2 mutation and high nicotine use could significantly increase the likelihood of bleeding during neurosurgical procedures, calling for more research into this connection.
View Article and Find Full Text PDF

Background: Despite the increased use of mechanical thrombectomy (MT) in recent years, there remains a lack of research on in-hospital mortality rates following the procedure, the primary factors influencing these rates, and the potential for predicting them. This study aimed to utilize interpretable machine learning (ML) to help clarify these uncertainties.

Methods: This retrospective study involved patients with anterior circulation large vessel occlusion (LVO)-related ischemic stroke who underwent MT.

View Article and Find Full Text PDF

Purpose: Based on considerable interest to enlarge the experimental database of radioresistant cells after their irradiation with helium ions, HTB140, MCF-7 and HTB177 human malignant cells are exposed to helium ion beams having different linear energy transfer (LET).

Materials And Methods: The cells are irradiated along the widened 62 MeV/u helium ion Bragg peak, providing LET of 4.9, 9.

View Article and Find Full Text PDF

Background: as a relatively high number of ST-segment elevation myocardial infarction (STEMI) patients develop major adverse cardiovascular events (MACE) following percutaneous coronary intervention (PCI), our aim was to determine the significance, and possible predictive value of QRS complex width and ST-segment elevation.

Methods: our patient sample included 200 PCI-treated STEMI patients, which were divided into two groups based on the following duration of symptoms: (I) less than 6 h, and (II) 6 to 12 h. For every patient, an ECG was performed at six different time points, patients were followed for up to six years for the occurrence of MACE.

View Article and Find Full Text PDF

Purpose: The use of Monte Carlo (MC) simulations capable of reproducing radiobiological effects of ionising radiation on human cell lines is of great importance, especially for cases involving protons and heavier ion beams. In the latter, huge uncertainties can arise mainly related to the effects of the secondary particles produced in the beam-tissue interaction. This paper reports on a detailed MC study performed using Geant4-based approach on three cancer cell lines, the HTB-177, CRL-5876 and MCF-7, that were previously irradiated with therapeutic proton and carbon ion beams.

View Article and Find Full Text PDF

Today, mobile robots have a wide range of real-world applications where they can replace or assist humans in many tasks, such as search and rescue, surveillance, patrolling, inspection, environmental monitoring, etc. These tasks usually require a robot to navigate through a dynamic environment with smooth, efficient, and safe motion. In this paper, we propose an online smooth-motion-planning method that generates a smooth, collision-free patrolling trajectory based on clothoid curves.

View Article and Find Full Text PDF

Purpose: This study aimed to develop a computational environment for the accurate simulation of human cancer cell irradiation using Geant4-DNA. New cell geometrical models were developed and irradiated by alpha particle beams to induce DNA damage. The proposed approach may help further investigation of the benefits of external alpha irradiation therapy.

View Article and Find Full Text PDF

Purpose: Track structure Monte Carlo (MC) codes have achieved successful outcomes in the quantitative investigation of radiation-induced initial DNA damage. The aim of the present study is to extend a Geant4-DNA radiobiological application by incorporating a feature allowing for the prediction of DNA rejoining kinetics and corresponding cell surviving fraction along time after irradiation, for a Chinese hamster V79 cell line, which is one of the most popular and widely investigated cell lines in radiobiology.

Methods: We implemented the Two-Lesion Kinetics (TLK) model, originally proposed by Stewart, which allows for simulations to calculate residual DNA damage and surviving fraction along time via the number of initial DNA damage and its complexity as inputs.

View Article and Find Full Text PDF

The complete coverage path planning is a process of finding a path which ensures that a mobile robot completely covers the entire environment while following the planned path. In this paper, we propose a complete coverage path planning algorithm that generates smooth complete coverage paths based on clothoids that allow a nonholonomic mobile robot to move in optimal time while following the path. This algorithm greatly reduces coverage time, the path length, and overlap area, and increases the coverage rate compared to the state-of-the-art complete coverage algorithms, which is verified by simulation.

View Article and Find Full Text PDF

Examples on the real-world field application of Raman spectroscopy with systematic analysis of the intensity variation of D and G bands corresponding to the change of excitation laser energy to characterize and compare coke species from various industrial processes are presented. The findings indicate the different degree of sp and sp hybridized bonding structures of amorphous carbon collected from different industrial processes as well as heavy carbonaceous deposits generated by industrial catalysts. This spectroscopic methodology is practical and highly beneficial in identifying coke formation mechanisms in industrial processes, as well as supporting design strategies to abate the undesired coke formation on industrial catalysts.

View Article and Find Full Text PDF

Accurately modeling the radiobiological mechanisms responsible for the induction of DNA damage remains a major scientific challenge, particularly for understanding the effects of low doses of ionizing radiation on living beings, such as the induction of carcinogenesis. A computational approach based on the Monte Carlo technique to simulate track structures in a biological medium is currently the most reliable method for calculating the early effects induced by ionizing radiation on DNA, the primary cellular target of such effects. The Geant4-DNA Monte Carlo toolkit can simulate not only the physical, but also the physico-chemical and chemical stages of water radiolysis.

View Article and Find Full Text PDF

Purpose: The complex relationship between linear energy transfer (LET) and cellular response to radiation is not yet fully elucidated. To better characterize DNA damage after irradiations with therapeutic protons, we monitored formation and disappearance of DNA double-strand breaks (DNA DSB) as a function of LET and time. Comparisons with conventional γ-rays and high LET carbon ions were also performed.

View Article and Find Full Text PDF

Al2O3-supported Pt/Pd bimetallic catalysts were studied using in situ atmospheric pressure and ex situ transmission electron microscopy. Real-time observation during separate oxidation and reduction processes provides nanometer-scale structural details - both morphology and chemistry - of supported Pt/Pd particles at intermediate states not observable through typical ex situ experiments. Significant metal vaporization was observed at temperatures above 600 °C, both in pure oxygen and in air.

View Article and Find Full Text PDF

Ionising radiation induced DNA damage and subsequent biological responses to it depend on the radiation's track-structure and its energy loss distribution pattern. To investigate the underlying biological mechanisms involved in such complex system, there is need of predicting biological response by integrated Monte Carlo (MC) simulations across physics, chemistry and biology. Hence, in this work, we have developed an application using the open source Geant4-DNA toolkit to propose a realistic "fully integrated" MC simulation to calculate both early DNA damage and subsequent biological responses with time.

View Article and Find Full Text PDF

Purpose: Analysis of elimination of four human radioresistant malignant cell lines to mono-energetic and non mono-energetic incoming carbon ion beams, characterized by different linear energy transfer (LET) qualities is performed. Comparisons with protons from the middle of the therapeutic spread out Bragg peak (SOBP) and reference γ-rays are also included.

Materials And Methods: HTB140 cells were irradiated at five positions, with different LET, along the 62 MeV carbon pristine Bragg peak.

View Article and Find Full Text PDF

This article proposes a framework for human-pose estimation from the wearable sensors that rely on a Lie group representation to model the geometry of the human movement. Human body joints are modeled by matrix Lie groups, using special orthogonal groups SO(2) and SO(3) for joint pose and special Euclidean group SE(3) for base-link pose representation. To estimate the human joint pose, velocity, and acceleration, we develop the equations for employing the extended Kalman filter on Lie groups (LG-EKF) to explicitly account for the non-Euclidean geometry of the state space.

View Article and Find Full Text PDF

The advancement of multidisciplinary research fields dealing with ionising radiation induced biological damage - radiobiology, radiation physics, radiation protection and, in particular, medical physics - requires a clear mechanistic understanding of how cellular damage is induced by ionising radiation. Monte Carlo (MC) simulations provide a promising approach for the mechanistic simulation of radiation transport and radiation chemistry, towards the in silico simulation of early biological damage. We have recently developed a fully integrated MC simulation that calculates early single strand breaks (SSBs) and double strand breaks (DSBs) in a fractal chromatin based human cell nucleus model.

View Article and Find Full Text PDF

Purpose: Investigation of effects on DNA of γ-irradiated human cancer cells pretreated with free radical scavengers is aimed to create reference data which would enable assessment of the relative efficiency of high linear energy transfer (LET) radiations used in hadron therapy, i.e. protons and carbon ions.

View Article and Find Full Text PDF

Background & Objectives: The main goal when treating malignancies with radiation is to deprive tumour cells of their reproductive potential. One approach is to induce tumour cell apoptosis. This study was conducted to evaluate the ability of carbon ions ( [12] C) to induce apoptosis and cell cycle arrest in human HTB140 melanoma cells.

View Article and Find Full Text PDF

The aim of this study was to investigate effects of irradiations with the therapeutic proton and carbon ion beams in two non-small cell lung cancers, CRL5876 adenocarcinoma and HTB177 large cell lung carcinoma. The DNA damage response dynamics, cell cycle regulation, and cell death pathway activation were followed. Viability of both cell lines was lower after carbon ions compared to the therapeutic proton irradiations.

View Article and Find Full Text PDF

In most patients with lung cancer radiation treatment is used either as single agent or in combination with radiosensitizing drugs. However, the mechanisms underlying combined therapy and its impact on different modes of cell death have not yet been fully elucidated. We aimed to examine effects of single and combined treatments with γ-rays and erlotinib on radioresistant CRL-5876 human lung adenocarcinoma cells with particular emphasis on cell death.

View Article and Find Full Text PDF

Ionizing radiation induces DNA double strand breaks (DSBs) that trigger phosphorylation of the histone protein H2AX (γH2AX). Immunofluorescent staining visualizes formation of γH2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell.

View Article and Find Full Text PDF

Introduction: Proton radiation offers physical advantages over conventional radiation. Radiosensitivity of human 59M ovarian cancer and HTB140 melanoma cells was investigated after exposure to γ-rays and protons.

Material And Methods: Irradiations were performed in the middle of a 62 MeV therapeutic proton spread out Bragg peak with doses ranging from 2 to 16 Gy.

View Article and Find Full Text PDF

Response of human HTB140 melanoma cells to proton irradiation in combination with fotemustine (FM) was investigated. Effects of these agents were analysed on cell proliferation and induction of apoptosis. Cells pretreated with 100- or 250-µM of FM were irradiated in the middle of the therapeutic 62-MeV proton spread-out Bragg peak, with a dose of 16 Gy.

View Article and Find Full Text PDF