Publications by authors named "Ivan Ninenko"

This perspective considers the novel concept of olfactory neurofeedback (O-NFB) within the framework of brain-computer interfaces (BCIs), where olfactory stimuli are integrated in various BCI control loops. In particular, electroencephalography (EEG)-based O-NFB systems are capable of incorporating different components of complex olfactory processing - from simple discrimination tasks to using olfactory stimuli for rehabilitation of neurological disorders. In our own work, EEG theta and alpha rhythms were probed as control variables for O-NFB.

View Article and Find Full Text PDF

Introduction: Recordings of electroencephalographic (EEG) rhythms and their analyses have been instrumental in basic neuroscience, clinical diagnostics, and the field of brain-computer interfaces (BCIs). While in the past such measurements have been conducted mostly in laboratory settings, recent advancements in dry electrode technology pave way to a broader range of consumer and medical application because of their greater convenience compared to gel-based electrodes.

Methods: Here we conducted resting-state EEG recordings in two groups of healthy participants using three dry-electrode devices, the PSBD Headband, the PSBD Headphones and the Muse Headband, and one standard gel electrode-based system, the NVX.

View Article and Find Full Text PDF

Electroencephalography (EEG) correlates of olfaction are of fundamental and practical interest for many reasons. In the field of neural technologies, olfactory-based brain-computer interfaces (BCIs) represent an approach that could be useful for neurorehabilitation of anosmia, dysosmia and hyposmia. While the idea of a BCI that decodes neural responses to different odors and/or enables odor-based neurofeedback is appealing, the results of previous EEG investigations into the olfactory domain are rather inconsistent, particularly when non-primary processing of olfactory signals is concerned.

View Article and Find Full Text PDF