In this paper, we consider the problem of numerical investigation of the counting statistics for a class of one-dimensional systems. Importance sampling, the cornerstone technique usually implemented for such problems, critically hinges on selecting an appropriate biased distribution. While an exponential tilt in the observable stands as the conventional choice for various problems, its efficiency in the context of counting statistics may be significantly hindered by the genuine discreteness of the observable.
View Article and Find Full Text PDFWe consider a system of noninteracting Brownian particles on the line with steplike initial condition and study the statistics of the occupation time on the positive half-line. We demonstrate that even at large times, the behavior of the occupation time exhibits long-lasting memory effects of the initialization. Specifically, we calculate the mean and the variance of the occupation time, demonstrating that the memory effects in the variance are determined by a generalized compressibility (or Fano factor), associated with the initial condition.
View Article and Find Full Text PDFWe consider a system of noninteracting Brownian particles on a line with a steplike initial condition, and we investigate the behavior of the local time at the origin at large times. We compute the mean and the variance of the local time, and we show that the memory effects are governed by the Fano factor associated with the initial condition. For the uniform initial condition, we show that the probability distribution of the local time admits a large deviation form, and we compute the corresponding large deviation functions for the annealed and quenched averaging schemes.
View Article and Find Full Text PDF