Publications by authors named "Ivan Mura"

Background: Cervical cancer (CC) is globally ranked fourth in terms of incidence and mortality among women. Vaccination against Human Papillomavirus (HPV) and screening programs can significantly reduce CC mortality rates. Hence, executing cost-effective public health policies for prevention and surveillance is crucial.

View Article and Find Full Text PDF

Chaotic behavior refers to a behavior which, albeit irregular, is generated by an underlying deterministic process. Therefore, a chaotic behavior is potentially controllable. This possibility becomes practically amenable especially when chaos is shown to be low-dimensional, i.

View Article and Find Full Text PDF

Clostridium botulinum produces botulinum neurotoxins (BoNTs), highly potent substances responsible for botulism. Currently, mathematical models of C. botulinum growth and toxigenesis are largely aimed at risk assessment and do not include explicit genetic information beyond group level but integrate many component processes, such as signalling, membrane permeability and metabolic activity.

View Article and Find Full Text PDF

Botulinum neurotoxins (BoNTs) produced by the anaerobic bacterium Clostridium botulinum are the most poisonous substances known to mankind. However, toxin regulation and signals triggering synthesis as well as the regulatory network and actors controlling toxin production are unknown. Experiments show that the neurotoxin gene is growth phase dependent for C.

View Article and Find Full Text PDF

Botulinum neurotoxins (BoNTs) produced by the anaerobic bacterium Clostridium botulinum are the most potent biological substances known to mankind. BoNTs are the agents responsible for botulism, a rare condition affecting the neuromuscular junction and causing a spectrum of diseases ranging from mild cranial nerve palsies to acute respiratory failure and death. BoNTs are a potential biowarfare threat and a public health hazard, since outbreaks of foodborne botulism are caused by the ingestion of preformed BoNTs in food.

View Article and Find Full Text PDF

The periodic oscillations in the activity of the cell cycle regulatory program, drives the timely activation of key cell cycle events. Interesting dynamical systems, such as oscillators, have been investigated by various theoretical and computational modeling methods. Thanks to the insights achieved by these modeling efforts we have gained considerable insights about the underlying molecular regulatory networks that can drive cell cycle oscillations.

View Article and Find Full Text PDF

Background: Bacterial spores are important contaminants in food, and the spore forming bacteria are often implicated in food safety and food quality considerations. Spore formation is a complex developmental process involving the expression of more than 500 genes over the course of 6 to 8 hrs. The process culminates in the formation of resting cells capable of resisting environmental extremes and remaining dormant for long periods of time, germinating when conditions promote further vegetative growth.

View Article and Find Full Text PDF

Recent innovations in experimental techniques on single molecule detection resulted in advances in the quantification of molecular noise in several systems, and provide suitable data for defining stochastic computational models of biological processes. Some of the latest stochastic models of cell cycle regulation analyzed the effect of noise on cell cycle variability. In their study, Kar et al.

View Article and Find Full Text PDF

Recent innovations in experimental techniques on single molecule detection resulted in advances in the quantification of molecular noise in several systems, and provide suitable data for defining stochastic computational models of biological processes. Some of the latest stochastic models of cell cycle regulation analyzed the effect of noise on cell cycle variability. In their study, Kar et al.

View Article and Find Full Text PDF

In robust biological systems, wide deviations from highly controlled normal behavior may be rare, yet they may result in catastrophic complications. While in silico analysis has gained an appreciation as a tool to offer insights into system-level properties of biological systems, analysis of such rare events provides a particularly challenging computational problem. This paper proposes an efficient stochastic simulation method to analyze rare events in biochemical systems.

View Article and Find Full Text PDF

This paper presents the definition, solution and validation of a stochastic model of the budding yeast cell cycle, based on Stochastic Petri Nets (SPN). A specific family of SPNs is selected for building a stochastic version of a well-established deterministic model. We describe the procedure followed in defining the SPN model from the deterministic ODE model, a procedure that can be largely automated.

View Article and Find Full Text PDF