The overall sensitivity of frontside-illuminated, silicon single-photon avalanche diode (SPAD) arrays has often suffered from fill factor limitations. The fill factor loss can however be recovered by employing microlenses, whereby the challenges specific to SPAD arrays are represented by large pixel pitch (> 10 µm), low native fill factor (as low as ∼10%), and large size (up to 10 mm). In this work we report on the implementation of refractive microlenses by means of photoresist masters, used to fabricate molds for imprints of UV curable hybrid polymers deposited on SPAD arrays.
View Article and Find Full Text PDFUnderstanding exciton-exciton interaction in multiply excited nanocrystals is crucial to their utilization as functional materials. Yet, for lead halide perovskite nanocrystals, which are promising candidates for nanocrystal-based technologies, numerous contradicting values have been reported for the strength and sign of their exciton-exciton interaction. In this work, we unambiguously determine the biexciton binding energy in single cesium lead halide perovskite nanocrystals at room temperature.
View Article and Find Full Text PDFMultiply excited states in semiconductor quantum dots feature intriguing physics and play a crucial role in nanocrystal-based technologies. While photoluminescence provides a natural probe to investigate these states, room-temperature single-particle spectroscopy of their emission has proved elusive due to the temporal and spectral overlap with emission from the singly excited and charged states. Here, we introduce biexciton heralded spectroscopy enabled by a single-photon avalanche diode array based spectrometer.
View Article and Find Full Text PDFTemporal photon correlation measurement, instrumental to probing the quantum properties of light, typically requires multiple single photon detectors. Progress in single photon avalanche diode (SPAD) array technology highlights their potential as high-performance detector arrays for quantum imaging and photon number-resolving (PNR) experiments. Here, we demonstrate this potential by incorporating a novel on-chip SPAD array with 42% peak photon detection efficiency, low dark count rate and crosstalk probability of 0.
View Article and Find Full Text PDFSingle-photon avalanche diode (SPAD) arrays are solid-state detectors that offer imaging capabilities at the level of individual photons, with unparalleled photon counting and time-resolved performance. This fascinating technology has progressed at a very fast pace in the past 15 years, since its inception in standard CMOS technology in 2003. A host of architectures have been investigated, ranging from simpler implementations, based solely on off-chip data processing, to progressively "smarter" sensors including on-chip, or even pixel level, time-stamping and processing capabilities.
View Article and Find Full Text PDFIEEE J Sel Top Quantum Electron
August 2018
We report on SwissSPAD2, an image sensor with 512×512 photon-counting pixels, each comprising a single-photon avalanche diode (SPAD), a 1-bit memory, and a gating mechanism capable of turning the SPAD on and off, with a skew of 250ps and 344ps, respectively, for a minimum duration of 5.75ns. The sensor is designed to achieve a frame rate of up to 97,700 binary frames per second and sub-40ps gate shifts.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2019
Single-photon avalanche diode (SPAD) imagers can perform fast time-resolved imaging in a compact form factor, by exploiting the processing capability and speed of integrated CMOS electronics. Developments in SPAD imagers have recently made them compatible with widefield microscopy, thanks to array formats approaching one megapixel and sensitivity and noise levels approaching those of established technologies. In this paper, phasor-based FLIM is demonstrated with a gated binary 512×512 SPAD imager, which can operate with a gate length as short as 5.
View Article and Find Full Text PDFPer-pixel time-to-digital converter (TDC) architectures have been exploited by single-photon avalanche diode (SPAD) sensors to achieve high photon throughput, but at the expense of fill factor, pixel pitch and readout efficiency. In contrast, TDC sharing architecture usually features high fill factor at small pixel pitch and energy efficient event-driven readout. While the photon throughput is not necessarily lower than that of per-pixel TDC architectures, since the throughput is not only decided by the TDC number but also the readout bandwidth.
View Article and Find Full Text PDFConfocal microscopes use photomultiplier tubes and hybrid detectors due to their large dynamic range, which typically exceeds the one of single-photon avalanche diodes (SPADs). The latter, due to their photon counting operation, are usually limited to an output count rate to 1/Tdead. In this paper, we present a thorough analysis, which can actually be applied to any photon counting detector, on how to extend the SPAD dynamic range by exploiting the nonlinear photon response at high count rates and for different recharge mechanisms.
View Article and Find Full Text PDF