The article is devoted to the creation of enzymatic nanoreactors based on polystyrene-block-poly(acrylic acid) (PS-b-PAA) copolymers containing bioscavengers capable of neutralizing toxic esters both in the body and in the environment. Block copolymers of different amphiphilicity, hydrophilicity and molecular weights were synthesized and characterized using gel permeation chromatography, NMR and UV spectroscopy. Polymeric nanocontainers in the absence and presence of human butyrylcholinesterase were made by film hydration and characterized by dynamic light scattering and microscopy methods.
View Article and Find Full Text PDFAn approach to the preparation of pullulan-graft-poly(2-methyl-2-oxazoline)s based on Cu-catalyzed azide-alkyne cycloaddition with polyoxazoline-azide was applied. All of the obtained polymers were characterized through classical molecular hydrodynamic methods and NMR. The formation of graft copolymers was accomplished by oxidative degradation of pullulan chains.
View Article and Find Full Text PDFIn this work, we report our results on the hydrodynamic behavior of poly(2-methyl-2-oxazoline) (PMeOx). PMeOx is gaining significant attention for use as hydrophilic polymer in pharmaceutical carriers as an alternative for the commonly used poly(ethylene glycol) (PEG), for which antibodies are found in a significant fraction of the human population. The main focus of the current study is to determine the hydrodynamic characteristics of PMeOx under physiological conditions, which serves as basis for better understanding of the use of PMeOx in pharmaceutical applications.
View Article and Find Full Text PDFThe aim of this work was to increase the efficiency of catalytic systems for the hydrolytic cleavage of 4-nitrophenyl esters of phosphonic acids. Quaternary ammonium-containing comb-like polyelectrolytes («polymerized micelles») with ester cleavable fragments and a low aggregation threshold were used as catalysts. The synthesis of poly(11-acryloyloxyundecylammonium) surfactants with different counterions (Br , NO , CH C H SO ) and head groups was realized by micellar free-radical polymerization.
View Article and Find Full Text PDFDiastereoselective synthesis of water-soluble fullerene compounds bearing a pharmacophore pyrrolofullerene-2',5'-dicarboxylate unit is reported. The stereocontrol of the product configuration is achieved through stereospecificity of two consecutive concerted reactions: electrocyclic aziridine ring opening followed by 1,3-dipolar cycloaddition of the resulting azomethyne ylide. The solubility in water (up to 20 μM through direct dissolution) is secured by introducing a polyethylene glycol (PEG) hydrophilic pendant.
View Article and Find Full Text PDFSpecially designed porphyrin-fullerene dyads have been synthesized to verify literature predictions based on quantum chemistry calculations that certain porphyrin-fullerene dyads are able to self-arrange into specific structures providing channels for charge transport in a bulk mass of organic compound. According to AFM and SEM data, the newly synthesized compounds were indeed prone to some kind of self-arrangement, although to a lesser degree than was expected. A dispersion corrected DFT study of the molecular non-covalent interactions performed at the DFT-D3 (B3LYP, 6-31G*) level of theory showed that the least energy corresponded to head-to-head dimers, with close contacts of porphyrin-porphyrin and fullerene-fullerene fragments, thus providing a unit building block of the channel for charge transport.
View Article and Find Full Text PDF