Cancer biology research is increasingly moving toward innovative 3D culture models, as conventional and current 2D cell cultures fail to resemble cancer biology. In the current study, porous 3D scaffolds, designed with two different porosities along with 2D tissue culture polystyrene (TCP) plates were used with a model breast cancer human cell line. The 3D engineered system was evaluated for the optimal seeding method (dynamic versus static), adhesion, and proliferation rate of MDA-MB-231 breast cancer cells.
View Article and Find Full Text PDFDespite numerous advances in the field of tissue engineering and regenerative medicine, monitoring the formation of tissue regeneration and its metabolic variations during culture is still a challenge and mostly limited to bulk volumetric assays. Here, a simple method of adding capsules-based optical sensors in cell-seeded 3D scaffolds is presented and the potential of these sensors to monitor the pH changes in space and time during cell growth is demonstrated. It is shown that the pH decreased over time in the 3D scaffolds, with a more prominent decrease at the edges of the scaffolds.
View Article and Find Full Text PDFMechanosensing proteins have mainly been investigated in 2D culture platforms, while understanding their regulation in 3D enviroments is critical for tissue engineering. Among mechanosensing proteins, the actin cytoskeleton plays a key role in human mesenchymal stromal cells (hMSCs) activity, but its regulation in 3D tissue engineered scaffolds remains poorly studied. Here, we show that human mesenchymal stromal cells (hMSCs) cultured on 3D electrospun scaffolds made of a stiff material do not form actin stress fibers, contrary to hMSCs on 2D films of the same material.
View Article and Find Full Text PDFThe current generation of tissue engineered additive manufactured scaffolds for cartilage repair shows high potential for growing adult cartilage tissue. This study proposes two surface modification strategies based on non-thermal plasma technology for the modification of poly(ethylene oxide terephthalate/poly(butylene terephthalate) additive manufactured scaffolds to enhance their cell-material interactions. The first, plasma activation in a helium discharge, introduced non-specific polar functionalities.
View Article and Find Full Text PDFOsteochondral regeneration remains nowadays a major problem since the outcome of current techniques is not satisfactory in terms of functional tissue formation and development. A possible solution is the combination of human mesenchymal stem cells (hMSCs) with additive manufacturing technologies to fabricate scaffolds with instructive properties. In this study, the differentiation of hMSCs within a scaffold presenting a gradient in pore shape is presented.
View Article and Find Full Text PDFUnlabelled: Articular cartilage lesions have a limited ability to heal by themselves. Yet, golden standard treatments for cartilage repair such as drilling, microfracture and mosaicplasty provide further damage and an unstable solution that degenerates into fibrocartilage in time. Articular cartilage presents a number of gradients in cell number and size along with structural gradients in extra cellular matrix (ECM) composition.
View Article and Find Full Text PDFSmall fractures in bone tissue can heal by themselves, but in case of larger defects current therapies are not completely successful due to several drawbacks. A possible strategy relies on the combination of additive manufactured polymeric scaffolds and human mesenchymal stromal cells (hMSCs). The architecture of bone tissue is characterized by a structural gradient.
View Article and Find Full Text PDFSwift progress in biofabrication technologies has enabled unprecedented advances in the application of developmental biology design criteria in three-dimensional scaffolds for regenerative medicine. Considering that tissues and organs in the human body develop following specific physico-chemical gradients, in this study, we hypothesized that additive manufacturing (AM) technologies would significantly aid in the construction of 3D scaffolds encompassing such gradients. Specifically, we considered surface energy and stiffness gradients and analyzed their effect on adult bone marrow derived mesenchymal stem cell differentiation into skeletal lineages.
View Article and Find Full Text PDF