We describe how increased root cortical parenchyma wall width (CPW) can improve tolerance to drought stress in maize by reducing the metabolic costs of soil exploration. Significant variation (1.0-5.
View Article and Find Full Text PDFArchaeological cobs from Paredones and Huaca Prieta (Peru) represent some of the oldest maize known to date, yet they present relevant phenotypic traits corresponding to domesticated maize. This contrasts with the earliest Mexican macro-specimens from Guila Naquitz and San Marcos, which are phenotypically intermediate for these traits, even though they date more recently in time. To gain insights into the origins of ancient Peruvian maize, we sequenced DNA from three Paredones specimens dating ~6700-5000 calibrated years before present (BP), conducting comparative analyses with two teosinte subspecies ( ssp.
View Article and Find Full Text PDFSuboptimal nitrogen availability is a primary constraint to plant growth. We used OpenSimRoot, a functional-structural plant/soil model, to test the hypothesis that larger root cortical cell size (CCS), reduced cortical cell file number (CCFN), and their interactions with root cortical aerenchyma (RCA) and lateral root branching density (LRBD) are useful adaptations to suboptimal soil nitrogen availability in maize (Zea mays). Reduced CCFN increased shoot dry weight over 80%.
View Article and Find Full Text PDFEfforts to understand the phenotypic transition that gave rise to maize from teosinte have mainly focused on the analysis of aerial organs, with little insights into possible domestication traits affecting the root system. Archeological excavations in San Marcos cave (Tehuacán, Mexico) yielded two well-preserved 5,300 to 4,970 calibrated y B.P.
View Article and Find Full Text PDF