Publications by authors named "Ivan Lazarevich"

Modern well-performing approaches to neural decoding are based on machine learning models such as decision tree ensembles and deep neural networks. The wide range of algorithms that can be utilized to learn from neural spike trains, which are essentially time-series data, results in the need for diverse and challenging benchmarks for neural decoding, similar to the ones in the fields of computer vision and natural language processing. In this work, we propose a spike train classification benchmark, based on open-access neural activity datasets and consisting of several learning tasks such as stimulus type classification, animal's behavioral state prediction, and neuron type identification.

View Article and Find Full Text PDF

Information and action coding by cortical circuits relies on a balanced dialogue between excitation and inhibition. Circuit hyperexcitability is considered a potential pathophysiological mechanism in various brain disorders, but the underlying deficits, especially at early disease stages, remain largely unknown. We report that asymptomatic female mice carrying the chromosome 9 open reading frame 72 (C9orf72) repeat expansion, which represents a high-prevalence genetic abnormality for human amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) spectrum disorder, exhibit abnormal motor cortex output.

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChRs) modulate the cholinergic drive to a hierarchy of inhibitory neurons in the superficial layers of the PFC, critical to cognitive processes. It has been shown that genetic deletions of the various types of nAChRs impact the properties of ultra-slow transitions between high and low PFC activity states in mice during quiet wakefulness. The impact characteristics depend on specific interneuron populations expressing the manipulated receptor subtype.

View Article and Find Full Text PDF

Experimental studies highlight the important role of the extracellular matrix (ECM) in the regulation of neuronal excitability and synaptic connectivity in the nervous system. In its turn, the neural ECM is formed in an activity-dependent manner. Its maturation closes the so-called critical period of neural development, stabilizing the efficient configurations of neural networks in the brain.

View Article and Find Full Text PDF

In fast-spiking (FS), parvalbumin-expressing interneurons of the CA1 hippocampus, activation of the GluA2-lacking Ca-permeable AMPA receptors (CP-AMPARs) in basal dendrites is coupled to Ca-induced Ca-release (CICR), and can result in a supralinear summation of postsynaptic Ca-transients (post-CaTs). While this mechanism is important in controlling the direction of long-term plasticity, it is still unknown whether it can operate at all excitatory synapses converging onto FS cells or at a set of synapses receiving a particular input. Using a combination of patch-clamp recordings and two-photon Ca imaging in acute mouse hippocampal slices with computational simulations, here we compared the generation of supralinear post-CaTs between apical and basal dendrites of FS cells.

View Article and Find Full Text PDF

Signal propagation in neuronal dendrites represents the basis for interneuron communication and information processing in the brain. Here we take into account charge inhomogeneities arising in the vicinity of ion channels in cytoplasm and obtain a modified cable equation. We show that charge inhomogeneities acting on a millisecond time scale can lead to the appearance of propagating waves with wavelengths of hundreds of micrometers.

View Article and Find Full Text PDF