We present a method to assess the reliability of local structure prediction from sequence. We introduce a greedy algorithm for filtering and enrichment of dynamic fragment libraries, compiled with remote-homology detection methods such as HHfrag. After filtering false hits at each target position, we reduce the fragment library to a minimal set of representative fragments, which are guaranteed to have correct local structure in regions of detectable conservation.
View Article and Find Full Text PDFSummary: Computational Structural Biology Toolbox (CSB) is a cross-platform Python class library for reading, storing and analyzing biomolecular structures with rich support for statistical analyses. CSB is designed for reusability and extensibility and comes with a clean, well-documented API following good object-oriented engineering practice.
Availability: Stable release packages are available for download from the Python Package Index (PyPI) as well as from the project's website http://csb.
Motivation: Over the last decade, both static and dynamic fragment libraries for protein structure prediction have been introduced. The former are built from clusters in either sequence or structure space and aim to extract a universal structural alphabet. The latter are tailored for a particular query protein sequence and aim to provide local structural templates that need to be assembled in order to build the full-length structure.
View Article and Find Full Text PDFSummary: Recently, several methods for analyzing phenotype data have been published, but only few are able to cope with data sets generated in different studies, with different methods, or for different species. We developed an online system in which more than 300 000 phenotypes from a wide variety of sources and screening methods can be analyzed together. Clusters of similar phenotypes are visualized as networks of highly similar phenotypes, inducing gene groups useful for functional analysis.
View Article and Find Full Text PDFPhenotypes are an important subject of biomedical research for which many repositories have already been created. Most of these databases are either dedicated to a single species or to a single disease of interest. With the advent of technologies to generate phenotypes in a high-throughput manner, not only is the volume of phenotype data growing fast but also the need to organize these data in more useful ways.
View Article and Find Full Text PDF