J Phys Chem C Nanomater Interfaces
October 2024
Manipulating physical properties through ion migration in complex oxide thin films is an emerging research direction to achieve tunable materials for advanced applications. While the reduction of complex oxides has been widely reported, few reports exist on the modulation of physical properties through a direct hydrogenation process. Here, we report an unusual mechanism for hydrogen-induced topotactic phase transitions in perovskite LaSrCoO thin films.
View Article and Find Full Text PDFMetal-insulator transitions (MITs) in resistive switching materials can be triggered by an electric stimulus that produces significant changes in the electrical response. When these phases have distinct magnetic characteristics, dramatic changes in the spin excitations are also expected. The transition metal oxide LaSrMnO (LSMO) is a ferromagnetic metal at low temperatures and a paramagnetic insulator above room temperature.
View Article and Find Full Text PDFElectrical triggering of a metal-insulator transition (MIT) often results in the formation of characteristic spatial patterns such as a metallic filament percolating through an insulating matrix or an insulating barrier splitting a conducting matrix. When MIT triggering is driven by electrothermal effects, the temperature of the filament or barrier can be substantially higher than the rest of the material. Using X-ray microdiffraction and dark-field X-ray microscopy, we show that electrothermal MIT triggering leads to the development of an inhomogeneous strain profile across the switching device, even when the material does not undergo a pronounced, discontinuous structural transition coinciding with the MIT.
View Article and Find Full Text PDFIn the pursuit of scalable and energy-efficient neuromorphic devices, recent research has unveiled a novel category of spiking oscillators, termed "thermal neuristors." These devices function via thermal interactions among neighboring vanadium dioxide resistive memories, emulating biological neuronal behavior. Here, we show that the collective dynamical behavior of networks of these neurons showcases a rich phase structure, tunable by adjusting the thermal coupling and input voltage.
View Article and Find Full Text PDFCMOS-RRAM integration holds great promise for low energy and high throughput neuromorphic computing. However, most RRAM technologies relying on filamentary switching suffer from variations and noise, leading to computational accuracy loss, increased energy consumption, and overhead by expensive program and verify schemes. We developed a filament-free, bulk switching RRAM technology to address these challenges.
View Article and Find Full Text PDFFast and sensitive phase transition detection is one of the most important requirements for new material synthesis and characterization. For solid-state samples, microwave absorption techniques can be employed for detecting phase transitions because it simultaneously monitors changes in electronic and magnetic properties. However, microwave absorption techniques require expensive high-frequency microwave equipment and bulky hollow cavities.
View Article and Find Full Text PDFWhile the complementary metal-oxide semiconductor (CMOS) technology is the mainstream for the hardware implementation of neural networks, an alternative route is explored based on a new class of spiking oscillators called "thermal neuristors", which operate and interact solely via thermal processes. Utilizing the insulator-to-metal transition (IMT) in vanadium dioxide, a wide variety of reconfigurable electrical dynamics mirroring biological neurons is demonstrated. Notably, inhibitory functionality is achieved just in a single oxide device, and cascaded information flow is realized exclusively through thermal interactions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2023
This work reports that synchronization of Mott material-based nanoscale coupled oscillators can be drastically different from that in conventional oscillators. We investigated the synchronization of spiking nanooscillators mediated by thermal interactions due to the close physical proximity of the devices. Controlling the driving voltage enables in-phase 1:1 and 2:1 integer synchronization modes between neighboring oscillators.
View Article and Find Full Text PDFRecently, evidence for a conducting surface state (CSS) below 19 K was reported for the correlated -electron small gap semiconductor FeSi. In the work reported herein, the CSS and the bulk phase of FeSi were probed via electrical resistivity ρ measurements as a function of temperature , magnetic field to 60 T, and pressure to 7.6 GPa, and by means of a magnetic field-modulated microwave spectroscopy (MFMMS) technique.
View Article and Find Full Text PDFControlling the magnetic ground states at the nanoscale is a long-standing basic research problem and an important issue in magnetic storage technologies. Here, we designed a nanostructured material that exhibits very unusual hysteresis loops due to a transition between vortex and double pole states. Arrays of 700 nm diamond-shaped nanodots consisting of Py(30 nm)/Ru()/Py(30 nm) (Py, permalloy (NiFe)) trilayers were fabricated by interference lithography and e-beam evaporation.
View Article and Find Full Text PDFMachine learning has experienced unprecedented growth in recent years, often referred to as an "artificial intelligence revolution." Biological systems inspire the fundamental approach for this new computing paradigm: using neural networks to classify large amounts of data into sorting categories. Current machine-learning schemes implement simulated neurons and synapses on standard computers based on a von Neumann architecture.
View Article and Find Full Text PDFSeveral highly effective Covid-19 vaccines are in emergency use, although more-infectious coronavirus strains, could delay the end of the pandemic even further. Because of this, it is highly desirable to develop fast antiviral drug treatments to accelerate the lasting immunity against the virus. From a theoretical perspective, computational approaches are useful tools for antiviral drug development based on the data analysis of gene expression, chemical structure, molecular pathway, and protein interaction mapping.
View Article and Find Full Text PDFProbabilistic computing is a paradigm in which data are not represented by stable bits, but rather by the probability of a metastable bit to be in a particular state. The development of this technology has been hindered by the availability of hardware capable of generating stochastic and tunable sequences of "1s" and "0s". The options are currently limited to complex CMOS circuitry and, recently, magnetic tunnel junctions.
View Article and Find Full Text PDFNoninvasive manipulation of cell signaling is critical in basic neuroscience research and in developing therapies for neurological disorders and psychiatric conditions. Here, the wireless force-induced stimulation of primary neuronal circuits through mechanotransduction mediated by magnetic microdiscs (MMDs) under applied low-intensity and low-frequency alternating magnetic fields (AMFs), is described. MMDs are fabricated by top-down lithography techniques that allow for cost-effective mass production of biocompatible MMDs with high saturation and zero magnetic magnetic moment at remanence.
View Article and Find Full Text PDFApplication of an electric stimulus to a material with a metal-insulator transition can trigger a large resistance change. Resistive switching from an insulating into a metallic phase, which typically occurs by the formation of a conducting filament parallel to the current flow, is a highly active research topic. Using the magneto-optical Kerr imaging, we found that the opposite type of resistive switching, from a metal into an insulator, occurs in a reciprocal characteristic spatial pattern: the formation of an insulating barrier perpendicular to the driving current.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2021
Vanadium dioxide (VO), which exhibits a near-room-temperature insulator-metal transition, has great potential in applications of neuromorphic computing devices. Although its volatile switching property, which could emulate neuron spiking, has been studied widely, nanoscale studies of the structural stochasticity across the phase transition are still lacking. In this study, using in situ transmission electron microscopy and ex situ resistive switching measurement, we successfully characterized the structural phase transition between monoclinic and rutile VO at local areas in planar VO/TiO device configuration under external biasing.
View Article and Find Full Text PDFIn a spintronic resonator a radio-frequency signal excites spin dynamics that can be detected by the spin-diode effect. Such resonators are generally based on ferromagnetic metals and their responses to spin torques. New and richer functionalities can potentially be achieved with quantum materials, specifically with transition metal oxides that have phase transitions that can endow a spintronic resonator with hysteresis and memory.
View Article and Find Full Text PDFMany correlated systems feature an insulator-to-metal transition that can be triggered by an electric field. Although it is known that metallization takes place through filament formation, the details of how this process initiates and evolves remain elusive. We use in-operando optical reflectivity to capture the growth dynamics of the metallic phase with space and time resolution.
View Article and Find Full Text PDFTo circumvent the von Neumann bottleneck, substantial progress has been made towards in-memory computing with synaptic devices. However, compact nanodevices implementing non-linear activation functions are required for efficient full-hardware implementation of deep neural networks. Here, we present an energy-efficient and compact Mott activation neuron based on vanadium dioxide and its successful integration with a conductive bridge random access memory (CBRAM) crossbar array in hardware.
View Article and Find Full Text PDFWe investigate the local nanoscale changes of the magnetic anisotropy of a Ni film subject to an inverse magnetostrictive effect by proximity to a V2O3 layer. Using temperature-dependent photoemission electron microscopy (PEEM) combined with X-ray magnetic circular dichroism (XMCD), direct images of the Ni spin alignment across the first-order structural phase transition (SPT) of V2O3 were obtained. We find an abrupt temperature-driven reorientation of the Ni magnetic domains across the SPT, which is associated with a large increase of the coercive field.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2021
Vanadium dioxide (VO) has attracted much attention owing to its metal-insulator transition near room temperature and the ability to induce volatile resistive switching, a key feature for developing novel hardware for neuromorphic computing. Despite this interest, the mechanisms for nonvolatile switching functioning as synapse in this oxide remain not understood. In this work, we use in situ transmission electron microscopy, electrical transport measurements, and numerical simulations on Au/VO/Ge vertical devices to study the electroforming process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
Vanadium oxides are strongly correlated materials which display metal-insulator transitions (MITs) as well as various structural and magnetic properties that depend heavily on oxygen stoichiometry. Therefore, it is crucial to precisely control oxygen stoichiometry in these materials, especially in thin films. This work demonstrates a high-vacuum gas evolution technique which allows for the modification of oxygen concentrations in VO thin films by carefully tuning the thermodynamic conditions.
View Article and Find Full Text PDFControl of the metal-insulator phase transition is vital for emerging neuromorphic and memristive technologies. The ability to alter the electrically driven transition between volatile and non-volatile states is particularly important for quantum-materials-based emulation of neurons and synapses. The major challenge of this implementation is to understand and control the nanoscale mechanisms behind these two fundamental switching modalities.
View Article and Find Full Text PDFVertical van der Waals (vdWs) heterostructures based on layered materials are attracting interest as a new class of quantum materials, where interfacial charge-transfer coupling can give rise to fascinating strongly correlated phenomena. Transition metal chalcogenides are a particularly exciting material family, including ferromagnetic semiconductors, multiferroics, and superconductors. Here, we report the growth of an organic-inorganic heterostructure by intercalating molecular electron donating bis(ethylenedithio)tetrathiafulvalene into (Li,Fe)OHFeSe, a layered material in which the superconducting ground state results from the intercalation of hydroxide layer.
View Article and Find Full Text PDF