Publications by authors named "Ivan H W Ng"

The Zika virus (ZIKV) non-structural protein 5 (NS5) plays multiple viral and cellular roles during infection, with its primary role in virus RNA replication taking place in the cytoplasm. However, immunofluorescence assay studies have detected the presence of ZIKV NS5 in unique spherical shell-like structures in the nuclei of infected cells, suggesting potentially important cellular roles of ZIKV NS5 in the nucleus. Hence ZIKV NS5's subcellular distribution and localization must be tightly regulated during ZIKV infection.

View Article and Find Full Text PDF

The Zika virus (ZIKV) epidemic in the Americas was alarming because of its link with microcephaly in neonates and Guillain-Barré syndrome in adults. The unusual pathologies induced by ZIKV infection and the knowledge that the flaviviral nonstructural protein 5 (NS5), the most conserved protein in the flavivirus proteome, can modulate the host immune response during ZIKV infection prompted us to investigate the subcellular localization of NS5 during ZIKV infection and explore its functional significance. A monopartite nuclear localization signal (NLS) sequence within ZIKV NS5 was predicted by the cNLS Mapper program, and we observed localization of ZIKV NS5 in the nucleus of infected cells by immunostaining with specific antibodies.

View Article and Find Full Text PDF

Dengue virus NS5 is the most highly conserved amongst the viral non-structural proteins and is responsible for capping, methylation and replication of the flavivirus RNA genome. Interactions of NS5 with host proteins also modulate host immune responses. Although replication occurs in the cytoplasm, an unusual characteristic of DENV2 NS5 is that it localizes to the nucleus during infection with no clear role in replication or pathogenesis.

View Article and Find Full Text PDF

Oligomerization of transcription factors controls their translocation into the nucleus and DNA-binding activity. Here we present a fluorescence microscopy analysis termed pCOMB (pair correlation of molecular brightness) that tracks the mobility of different oligomeric species within live cell nuclear architecture. pCOMB amplifies the signal from the brightest species present and filters the dynamics of the extracted oligomeric population based on arrival time between two locations.

View Article and Find Full Text PDF

Background: Src-family kinases (SFKs) are involved in neuronal survival and their aberrant regulation contributes to neuronal death. However, how they control neuronal survival and death remains unclear.

Objective: To define the effect of inhibition of Src activity and expression on neuronal survival.

View Article and Find Full Text PDF

The STAT3 signal transducer and activator of transcription is a key mediator of gene transcription in response to cytokines such as oncostatin M (OSM). We performed direct live cell imaging of GFP-tagged STAT3 proteins for the first time, showing transient relocalization of STAT3α to the nucleus following OSM exposure, in contrast to sustained nuclear relocalization of the shorter STAT3β spliceform. To explore this further, we applied fluorescence recovery after photobleaching (FRAP) to determine the nuclear import kinetics of STAT3α and β, as well as of a C-terminal truncation derivative STAT3ΔC comprising only the sequence shared by the spliceforms, in the absence or presence of OSM.

View Article and Find Full Text PDF

Persistent STAT3 phosphorylation and nuclear retention are hallmarks of a range of pathologies suggesting the importance of STAT3 transcriptional responses in disease progression. Since hyperosmotic stress (HOS) is a hallmark of diseases such as diabetes and asthma, we analysed the impact of HOS on cytokine-stimulated STAT3 signalling. In contrast to transient STAT3 Y705 and S727 phosphorylation in murine embryonic fibroblasts (MEFs) stimulated by the interleukin-6 family cytokine, leukemia inhibitory factor (LIF), under non-stress conditions, HOS induced by sorbitol treatment increased STAT3 S727 but not Y705 phosphorylation.

View Article and Find Full Text PDF

Although cytokine-driven STAT3 phosphorylation and activation are often transient, persistent activation of STAT3 is a hallmark of a range of pathologies and underpins altered transcriptional responses. As triggers in disease frequently include combined increases in inflammatory cytokine and reactive oxygen species levels, we report here how oxidative stress impacts on cytokine-driven STAT3 signal transduction events. In the model system of murine embryonic fibroblasts (MEFs), combined treatment with the interleukin-6 family cytokine Leukemia Inhibitory Factor (LIF) and hydrogen peroxide (H2O2) drove persistent STAT3 phosphorylation whereas STAT3 phosphorylation increased only transiently in response to LIF alone and was not increased by H2O2 alone.

View Article and Find Full Text PDF

The c-Jun N-terminal kinases (JNKs) are a group of stress-activated protein kinases that regulate gene expression changes through specific phosphorylation of nuclear transcription factor substrates. To address the mechanisms underlying JNK nuclear entry, we employed a semi-intact cell system to demonstrate for the first time that JNK1 nuclear entry is dependent on the importin α2/β1 heterodimer and independent of importins α3, α4, β2, β3, 7 and 13. However, quantitative image analysis of JNK1 localization following exposure of cells to either arsenite or hyperosmotic stress did not indicate its nuclear accumulation.

View Article and Find Full Text PDF

p32 [also known as HABP1 (hyaluronan-binding protein 1), gC1qR (receptor for globular head domains complement 1q) or C1qbp (complement 1q-binding protein)] has been shown previously to have both mitochondrial and non-mitochondrial localization and functions. In the present study, we show for the first time that endogenous p32 protein is a mitochondrial protein in HeLa cells under control and stress conditions. In defining the impact of altering p32 levels in these cells, we demonstrate that the overexpression of p32 increased mitochondrial fibrils.

View Article and Find Full Text PDF

Phosphorylation of STAT3 (signal transducer and activator of transcription 3) is critical for its nuclear import and transcriptional activity. Although a shorter STAT3β spliceform was initially described as a negative regulator of STAT3α, gene knockout studies have revealed that both forms play critical roles. We have expressed STAT3α and STAT3β at comparable levels to facilitate a direct comparison of their functional effects, and have shown their different cytokine-stimulated kinetics of phosphorylation and nuclear translocation.

View Article and Find Full Text PDF

We applied pulse-shape analysis (PulSA) to monitor protein localization changes in mammalian cells by flow cytometry. PulSA enabled high-throughput tracking of protein aggregation, translocation from the cytoplasm to the nucleus and trafficking from the plasma membrane to the Golgi as well as stress-granule formation. Combining PulSA with tetracysteine-based oligomer sensors in a cell model of Huntington's disease enabled further separation of cells enriched with monomers, oligomers and inclusion bodies.

View Article and Find Full Text PDF

Excessive proliferation and stabilization of the microtubule (MT) array in cardiac myocytes can accompany pathological cardiac hypertrophy, but the molecular control of these changes remains poorly characterized. In this study, we examined MT stabilization in two independent murine models of heart failure and revealed increases in the levels of post-translationally modified stable MTs, which were closely associated with STAT3 activation. To explore the molecular signaling events contributing to control of the cardiac MT network, we stimulated cardiac myocytes with an α-adrenergic agonist phenylephrine (PE), and observed increased tubulin content without changes in detyrosinated (glu-tubulin) stable MTs.

View Article and Find Full Text PDF

The JNKs (c-Jun N-terminal kinases) are stress-activated serine/threonine kinases that can regulate both cell death and cell proliferation. We have developed a cell system to control JNK re-expression at physiological levels in JNK1/2-null MEFs (murine embryonic fibroblasts). JNK re-expression restored basal and stress-activated phosphorylation of the c-Jun transcription factor and attenuated cellular proliferation with increased cells in G1/S-phase of the cell cycle.

View Article and Find Full Text PDF