Publications by authors named "Ivan Gordon"

For advanced optical analysis and optimization of solar cell structures with multi-scale interface textures, we applied a coupled modelling approach (CMA), where we couple the rigorous coupled wave analysis method with ray tracing and transfer matrix method. Coupling of the methods enables accurate optical analysis of solar cells made of thin coherent and thick incoherent layers and includes combinations of nano- and micro-scale textures at various positions in the structure. The approach is experimentally validated on standalone single- and both-side textured crystalline silicon wafers, as well as on complete silicon heterojunction (Si HJ) solar cell structures.

View Article and Find Full Text PDF

We report on the fabrication of disordered nanostructures by combining colloidal lithography and silicon etching. We show good control of the short-range ordered colloidal pattern for a wide range of bead sizes from 170 to 850 nm. The inter-particle spacing follows a Gaussian distribution with the average distance between two neighboring beads (center to center) being approximately twice their diameter, thus enabling the nanopatterning with dimensions relevant to the light wavelength scale.

View Article and Find Full Text PDF

Unlabelled: Sintered porous silicon is a well-known seed for homo-epitaxy that enables fabricating transferrable monocrystalline foils. The crystalline quality of these foils depends on the surface roughness and the strain of this porous seed, which should both be minimized. In order to provide guidelines for an optimum foil growth, we present a systematic investigation of the impact of the thickness of this seed and of its sintering time prior to epitaxial growth on strain and surface roughness.

View Article and Find Full Text PDF

: Because of its optical and electrical properties, large surfaces, and compatibility with standard silicon processes, porous silicon is a very interesting material in photovoltaic and microelectromechanical systems technology. In some applications, porous silicon is annealed at high temperature and, consequently, the cylindrical pores that are generated by anodization or stain etching reorganize into randomly distributed closed sphere-like pores. Although the design of devices which involve this material needs an accurate evaluation of its mechanical properties, only few researchers have studied the mechanical properties of porous silicon, and no data are nowadays available on the mechanical properties of sintered porous silicon.

View Article and Find Full Text PDF

In this paper, we present the integration of an absorbing photonic crystal within a monocrystalline silicon thin film photovoltaic stack fabricated without epitaxy. Finite difference time domain optical simulations are performed in order to design one- and two-dimensional photonic crystals to assist crystalline silicon solar cells. The simulations show that the 1D and 2D patterned solar cell stacks would have an increased integrated absorption in the crystalline silicon layer would increase of respectively 38% and 50%, when compared to a similar but unpatterned stack, in the whole wavelength range between 300 nm and 1100 nm.

View Article and Find Full Text PDF