Publications by authors named "Ivan Gallotta"

Article Synopsis
  • Wilson disease (WD) is caused by mutations in the ATP7B gene, leading to copper overload in the liver and brain, which can result in severe health issues.
  • A mutant strain of Caenorhabditis elegans was created to study this condition, showing significant Cu sensitivity, stunted development, and other health impairments due to a specific ATP7B variant.
  • The cua-1 mutant strain serves as a valuable experimental model for understanding copper toxicity in WD and testing potential therapeutic approaches.
View Article and Find Full Text PDF

Trimethylguanosine synthase 1 (TGS1) is a highly conserved enzyme that converts the 5'-monomethylguanosine cap of small nuclear RNAs (snRNAs) to a trimethylguanosine cap. Here, we show that loss of TGS1 in Caenorhabditis elegans, Drosophila melanogaster and Danio rerio results in neurological phenotypes similar to those caused by survival motor neuron (SMN) deficiency. Importantly, expression of human TGS1 ameliorates the SMN-dependent neurological phenotypes in both flies and worms, revealing that TGS1 can partly counteract the effects of SMN deficiency.

View Article and Find Full Text PDF

In metazoans, the secreted proteome participates in intercellular signalling and innate immunity, and builds the extracellular matrix scaffold around cells. Compared with the relatively constant intracellular environment, conditions for proteins in the extracellular space are harsher, and low concentrations of ATP prevent the activity of intracellular components of the protein quality-control machinery. Until now, only a few bona fide extracellular chaperones and proteases have been shown to limit the aggregation of extracellular proteins.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a degenerative disorder that selectively deteriorates motor neurons due to a deficiency of survival motor neuron protein (SMN). The illness is the leading genetic cause of death in infants and is difficult to study in complex biological systems such as humans. A simpler model system, such as the nematode C.

View Article and Find Full Text PDF

The dopamine transporter (DAT) is a cell membrane protein whose main function is to reuptake the dopamine (DA) released in the synaptic cleft back into the dopaminergic neurons. Previous studies suggested that the activity of DAT is regulated by allosteric proteins such as Syntaxin-1A and is altered by drugs of abuse such as amphetamine (Amph). Because expresses both DAT (DAT-1) and Syntaxin-1A (UNC-64), we used this model system to investigate the functional and behavioral effects caused by lack of expression of in cultured dopaminergic neurons and in living animals.

View Article and Find Full Text PDF
Article Synopsis
  • Exome sequencing has improved the identification of genes associated with Mendelian disorders, particularly in cases with unclear diagnoses, revealing more frequent phenotypic variations due to genetic mutations.
  • Research indicates that missense variants in the CDC42 gene, related to various growth and developmental issues, lead to a range of clinical symptoms, including facial and immunological abnormalities, similar to those seen in Noonan syndrome.
  • The study shows that mutations in CDC42 can disrupt its normal function, affecting cellular processes in different ways and complicating the classification of related disorders, highlighting the need for thorough functional analysis in understanding these syndromes.
View Article and Find Full Text PDF

In the last decades, the prevalence of neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD), has grown. These age-associated disorders are characterized by the appearance of protein aggregates with fibrillary structure in the brains of these patients. Exactly why normally soluble proteins undergo an aggregation process remains poorly understood.

View Article and Find Full Text PDF

SMN (Survival Motor Neuron) deficiency is the predominant cause of spinal muscular atrophy (SMA), a severe neurodegenerative disorder that can lead to progressive paralysis and death. Although SMN is required in every cell for proper RNA metabolism, the reason why its loss is especially critical in the motor system is still unclear. SMA genetic models have been employed to identify several modifiers that can ameliorate the deficits induced by SMN depletion.

View Article and Find Full Text PDF

Spinal muscular atrophy is a devastating disease that is characterized by degeneration and death of a specific subclass of motor neurons in the anterior horn of the spinal cord. Although the gene responsible, survival motor neuron 1 (SMN1), was identified 20 years ago, it has proven difficult to investigate its effects in vivo. Consequently, a number of key questions regarding the molecular and cellular functions of this molecule have remained unanswered.

View Article and Find Full Text PDF