Publications by authors named "Ivan Galkin"

RNA interference (RNAi)-based therapeutics hold the potential for dominant genetic disorders, enabling sequence-specific inhibition of pathogenic gene products. We aimed to direct RNAi for the selective suppression of the heterozygous c.607 G > A variant causing encephalopathy.

View Article and Find Full Text PDF

Introduction: The study aimed to investigate the effects of low concentrations of mitochondrial uncouplers in endothelial cells on the CpG dinucleotide methylation of the ICAM1 gene promoter. The excessive inflammatory response in the endothelium is responsible for the development of many cardiovascular diseases. Mitochondria are important regulators of endothelial cell functions.

View Article and Find Full Text PDF

Mutations that prevent the production of proteins in the gene cause Duchenne muscular dystrophy. Most frequently, these are deletions leading to reading-frame shift. The "reading-frame rule" states that deletions that preserve ORF result in a milder Becker muscular dystrophy.

View Article and Find Full Text PDF

Many muscular pathologies are associated with oxidative stress and elevated levels of the tumor necrosis factor (TNF) that cause muscle protein catabolism and impair myogenesis. Myogenesis defects caused by TNF are mediated in part by reactive oxygen species (ROS), including those produced by mitochondria (mitoROS), but the mechanism of their pathological action is not fully understood. We hypothesized that mitoROS act by triggering and enhancing mitophagy, an important tool for remodelling the mitochondrial reticulum during myogenesis.

View Article and Find Full Text PDF

Mitochondria-targeted antioxidants have become promising candidates for the therapy of various pathologies. The mitochondria-targeted antioxidant SkQ1, which is a derivative of plastoquinone, has been successfully used in preclinical studies for the treatment of cardiovascular and renal diseases, and has demonstrated anti-inflammatory activity in a number of inflammatory disease models. The present work aimed to investigate the therapeutic potential of SkQ1 and CTPP, the analog of SkQ1 lacking the antioxidant quinone moiety, in the prevention of sodium dextran sulfate (DSS) experimental colitis and impairment of the barrier function of the intestinal epithelium in mice.

View Article and Find Full Text PDF
Article Synopsis
  • Two types of assays (heterogeneous and homogeneous-heterogeneous) were developed to quantify hsa-miR-141-3p using isothermal circular strand-displacement polymerization (ICSDPR) and enhanced chemiluminescence for improved sensitivity.
  • The heterogeneous assay proved to be more sensitive than the homogeneous-heterogeneous assay, with detection limits of 51 fM and 10 pM, respectively, and an amplification index of 100.
  • The assays successfully determined the levels of miRNA-141 in various human cell lines, revealing distinct copy numbers per cell (Caco-2: 3400, HepG2: 1400, MCF-7: 1300, HeLa: 470).
View Article and Find Full Text PDF

In the present work, we describe the development of a chemiluminescent enzyme-linked oligonucleotide assay coupled with mismatched catalytic hairpin assembly (mCHA) amplification for the quantitative determination of microRNA-155. To improve its sensitivity, a polymerase-free mCHA reaction was applied as an isothermal amplification method. The detection limit of the proposed assay was 400 fM.

View Article and Find Full Text PDF

Aims: FcεRI-dependent activation and degranulation of mast cells (MC) play an important role in allergic diseases. We have previously demonstrated that triphenylphosphonium (TPP)-based antioxidant SkQ1 inhibits mast cell degranulation, but the exact mechanism of this inhibition is still unknown. This study focused on investigating the influence of TPP-based compounds SkQ1 and CTPP on FcεRI-dependent mitochondrial dysfunction and signaling during MC degranulation.

View Article and Find Full Text PDF

Muscles of patients with facioscapulohumeral dystrophy (FSHD) are characterized by sporadic DUX4 expression and oxidative stress which is at least partially induced by DUX4 protein. Nevertheless, targeting oxidative stress with antioxidants has a limited impact on FSHD patients, and the exact role of oxidative stress in the pathology of FSHD, as well as its interplay with the DUX4 expression, remain unclear. Here we set up a screen for genes that are upregulated by DUX4 via oxidative stress with the aim to target these genes rather than the oxidative stress itself.

View Article and Find Full Text PDF

A sensitive and specific heterogeneous assay for quantitation of cel-miRNA-39-3p (miRNA-39) was constructed. To improve the assay sensitivity an amplification strategy based on the use of isothermal circular strand-displacement polymerization reaction (ICSDPR), polyperoxidase conjugated with streptavidin and enhanced chemiluminescence was used. The detection limit of the proposed assay was 4 × 10 M.

View Article and Find Full Text PDF

AAV-delivered microdystrophin genes hold great promise for Duchenne muscular dystrophy (DMD) treatment. It is anticipated that the optimization of engineered dystrophin genes will be required to increase the efficacy and reduce the immunogenicity of transgenic proteins. An in vitro system is required for the efficacy testing of genetically engineered dystrophin genes.

View Article and Find Full Text PDF

Background: Targeting negatively charged mitochondria is often achieved using triphenylphosphonium (TPP) cations. These cationic vehicles may possess biological activity, and a docking study indicates that TPP-moieties may act as modulators of signaling through the estrogen receptor α (ERα). Moreover, in vivo and in vitro experiments revealed the estrogen-like effects of TPP-based compounds.

View Article and Find Full Text PDF

A new mitochondria-targeted probe MitoCLox was designed as a starting compound for a series of probes sensitive to cardiolipin (CL) peroxidation. Fluorescence microscopy reported selective accumulation of MitoCLox in mitochondria of diverse living cell cultures and its oxidation under stress conditions, particularly those known to cause a selective cardiolipin oxidation. Ratiometric fluorescence measurements using flow cytometry showed a remarkable dependence of the MitoCLox dynamic range on the oxidation of the sample.

View Article and Find Full Text PDF

Activation of neutrophils is accompanied by the oxidative burst, exocytosis of various granule types (degranulation) and a delay in spontaneous apoptosis. The major source of reactive oxygen species (ROS) in human neutrophils is NADPH oxidase (NOX2), however, other sources of ROS also exist. Although the function of ROS is mainly defensive, they can also play a regulatory role in cell signaling.

View Article and Find Full Text PDF

Mitochondrial dysfunctions occur in many diseases linked to the systemic inflammatory response syndrome (SIRS). Mild uncoupling of oxidative phosphorylation is known to rescue model animals from pathologies related to mitochondrial dysfunctions and overproduction of reactive oxygen species (ROS). To study the potential of SIRS therapy by uncoupling, we tested protonophore dinitrophenol (DNP) and a free fatty acid (FFA) anion carrier, lipophilic cation dodecyltriphenylphosphonium (CTPP) in mice and in vitro models of SIRS.

View Article and Find Full Text PDF

Rheumatoid arthritis is one of the most common autoimmune diseases. Many antioxidants have been tested in arthritis, but their efficacy was, at best, marginal. In this study, a novel mitochondria-targeted antioxidant, plastoquinonyl-decyl-triphenylphosphonium bromide (SkQ1), was tested in vivo to prevent and cure experimental autoimmune arthritis.

View Article and Find Full Text PDF

Vascular aging is accompanied by increases in circulatory proinflammatory cytokines leading to inflammatory endothelial response implicated in early atherogenesis. To study the possible role of mitochondria-derived reactive oxygen species (ROS) in this phenomenon, we applied the effective mitochondria-targeted antioxidant SkQ1, the conjugate of plastoquinone with dodecyltriphenylphosphonium. Eight months treatment of (CBAxC57BL/6) F1 mice with SkQ1 did not prevent age-related elevation of the major proinflammatory cytokines TNF and IL-6 in serum, but completely abrogated the increase in adhesion molecule ICAM1 expression in aortas of 24-month-old animals.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnl01mdjv51tc281fb4mgjks6n72f9a9k): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once