Publications by authors named "Ivan G Torre"

Compression has been presented as a general principle of animal communication. Zipf's Law of brevity is a manifestation of this postulate and can be generalized as the tendency of more frequent communicative elements to be shorter. Previous works supported this claim, showing evidence of Zipf's Law of brevity in animal acoustical communication and human language.

View Article and Find Full Text PDF

Menzerath's law is a quantitative linguistic law which states that, on average, the longer is a linguistic construct, the shorter are its constituents. In contrast, Menzerath-Altmann's law (MAL) is a precise mathematical power-law-exponential formula which expresses the expected length of the linguistic construct conditioned on the number of its constituents. In this paper, we investigate the anatomy of MAL for constructs being word tokens and constituents being syllables, measuring its length in graphemes.

View Article and Find Full Text PDF

Physical manifestations of linguistic units include sources of variability due to factors of speech production which are by definition excluded from counts of linguistic symbols. In this work, we examine whether linguistic laws hold with respect to the physical manifestations of linguistic units in spoken English. The data we analyse come from a phonetically transcribed database of acoustic recordings of spontaneous speech known as the Buckeye Speech corpus.

View Article and Find Full Text PDF

Linguistic laws constitute one of the quantitative cornerstones of modern cognitive sciences and have been routinely investigated in written corpora, or in the equivalent transcription of oral corpora. This means that inferences of statistical patterns of language in acoustics are biased by the arbitrary, language-dependent segmentation of the signal, and virtually precludes the possibility of making comparative studies between human voice and other animal communication systems. Here we bridge this gap by proposing a method that allows to measure such patterns in acoustic signals of arbitrary origin, without needs to have access to the language corpus underneath.

View Article and Find Full Text PDF

In this work, we show how number theoretical problems can be fruitfully approached with the tools of statistical physics. We focus on g-Sidon sets, which describe sequences of integers whose pairwise sums are different, and propose a random decision problem which addresses the probability of a random set of k integers to be g-Sidon. First, we provide numerical evidence showing that there is a crossover between satisfiable and unsatisfiable phases which converts to an abrupt phase transition in a properly defined thermodynamic limit.

View Article and Find Full Text PDF