Unlike fungal and bacterial diseases, no direct method is available to control viral diseases. The use of resistance-inducing compounds can be an alternative strategy for plant viruses. Here we studied the basal response of melon to (MNSV) and demonstrated the efficacy of hexanoic acid (Hx) priming, which prevents the virus from systemically spreading.
View Article and Find Full Text PDFResistance of tomato (Solanum Lycopersicum) to the fungal pathogen Botrytis cinerea requires complex interplay between hormonal signalling. In this study, we explored the involvement of new oxylipins in the tomato basal and induced response to this necrotroph through the functional analysis of the tomato α-dioxygenase2 (α-DOX2)-deficient mutant divaricata. We also investigated the role of SA in the defence response against this necrotrophic fungus using SA-deficient tomato nahG plants.
View Article and Find Full Text PDFSome alternative control strategies of currently emerging plant diseases are based on the use of resistance inducers. This review highlights the recent advances made in the characterization of natural compounds that induce resistance by a priming mechanism. These include vitamins, chitosans, oligogalacturonides, volatile organic compounds, azelaic and pipecolic acid, among others.
View Article and Find Full Text PDFDuring plant-pathogen interactions, the plant cell wall forms part of active defence against invaders. In recent years, cell wall-editing enzymes, associated with growth and development, have been related to plant susceptibility or resistance. Our previous work identified a role for several tomato and Arabidopsis endo-1,4-β-glucanases (EGs) in plant-pathogen interactions.
View Article and Find Full Text PDFTreatment with the resistance priming inducer hexanoic acid (Hx) protects tomato plants from Botrytis cinerea by activating defence responses. To investigate the molecular mechanisms underlying hexanoic acid-induced resistance (Hx-IR), we compared the expression profiles of three different conditions: Botrytis-infected plants (Inf), Hx-treated plants (Hx) and Hx-treated + infected plants (Hx+Inf). The microarray analysis at 24 h post-inoculation showed that Hx and Hx+Inf plants exhibited the differential expression and priming of many Botrytis-induced genes.
View Article and Find Full Text PDFMol Plant Microbe Interact
November 2009
We have demonstrated that root treatment with hexanoic acid protects tomato plants against Botrytis cinerea. Hexanoic acid-induced resistance (Hx-IR) was blocked in the jasmonic acid (JA)-insensitive mutant jai1 (a coi1 homolog) and in the abscisic acid (ABA)-deficient mutant flacca (flc). Upon infection, the LoxD gene as well as the oxylipin 12-oxo-phytodienoic acid and the bioactive molecule JA-Ile were clearly induced in treated plants.
View Article and Find Full Text PDFCel1 and Cel2 are members of the tomato (Solanum lycopersicum Mill) endo-beta-1,4-glucanase (EGase) family that may play a role in fruit ripening and organ abscission. This work demonstrates that Cel1 protein is present in other vegetative tissues and accumulates during leaf development. We recently reported the downregulation of both the Cel1 mRNA and protein upon fungal infection, suggesting the involvement of EGases in plant-pathogen interactions.
View Article and Find Full Text PDFThe in vitro and in vivo antifungal activity of adipic acid monoethyl ester (AAME) on the necrotrophic pathogen Botrytis cinerea has been studied. This chemical effectively controlled this important phytopathogen, inhibited spore germination and mycelium development at non-phytotoxic concentrations. The effectiveness of AAME treatment is concentration-dependent and influenced by pH.
View Article and Find Full Text PDF