Amyloid beta (Aβ) is a neuronal metabolic product that plays an important role in maintaining brain homeostasis. Normally, intensive brain Aβ formation is accompanied by its effective lymphatic removal. However, the excessive accumulation of brain Aβ is observed with age and during the development of Alzheimer's disease (AD) leading to cognitive impairment and memory deficits.
View Article and Find Full Text PDFHere, we present the new vascular effects of photodynamic therapy (PDT) with 5-aminolevulinic acid (5-ALA). PDT with 5-ALA induces a leakage of both the meningeal and cerebral blood vessels. The extravasation of photo-excited 5-ALA from the leaky blood vessels into the meninges causes photo-damage of the meningeal lymphatics (MLVs) leading to a dramatic reducing the MLV network and brain's drainage.
View Article and Find Full Text PDFThe meningeal lymphatic vessels (MLVs) play an important role in the removal of toxins from the brain. The development of innovative technologies for the stimulation of MLV functions is a promising direction in the progress of the treatment of various brain diseases associated with MLV abnormalities, including Alzheimer's and Parkinson's diseases, brain tumors, traumatic brain injuries, and intracranial hemorrhages. Sleep is a natural state when the brain's drainage processes are most active.
View Article and Find Full Text PDFIn this study on healthy male mice using confocal imaging of dye spreading in the brain and its further accumulation in the peripheral lymphatics, we demonstrate stronger effects of photobiomodulation (PBM) on the brain's drainage system in sleeping vs. awake animals. Using the Pavlovian instrumental transfer probe and the 2-objects-location test, we found that the 10-day course of PBM during sleep vs.
View Article and Find Full Text PDFAnesthesia enables the painless performance of complex surgical procedures. However, the effects of anesthesia on the brain may not be limited only by its duration. Also, anesthetic agents may cause long-lasting changes in the brain.
View Article and Find Full Text PDFThere is strong evidence that augmentation of the brain's waste disposal system via stimulation of the meningeal lymphatics might be a promising therapeutic target for preventing neurological diseases. In our previous studies, we demonstrated activation of the brain's waste disposal system using transcranial photostimulation (PS) with a laser 1267 nm, which stimulates the direct generation of singlet oxygen in the brain tissues. Here we investigate the mechanisms underlying this phenomenon.
View Article and Find Full Text PDFIntraventricular hemorrhage is one of the most fatal forms of brain injury that is a common complication of premature infants. However, the therapy of this type of hemorrhage is limited, and new strategies are needed to reduce hematoma expansion. Here we show that the meningeal lymphatics is a pathway to remove red blood cells from the brain's ventricular system of male human, adult and newborn rodents and is a target for non-invasive transcranial near infrared photobiomodulation.
View Article and Find Full Text PDFOver sixty years, laser technologies have undergone a technological revolution and become one of the main tools in biomedicine, particularly in neuroscience, neurodegenerative diseases and brain tumors. Glioblastoma is the most lethal form of brain cancer, with very limited treatment options and a poor prognosis. In this study on rats, we demonstrate that glioblastoma (GBM) growth can be suppressed by photosensitizer-free laser treatment (PS-free-LT) using a quantum-dot-based 1267 nm laser diode.
View Article and Find Full Text PDFWith the increase in the aging population, the global number of people with Alzheimer's disease (AD) progressively increased worldwide. The situation is aggravated by the fact that there is no the effective pharmacological therapy of AD. Photobiomodulation (PBM) is non-pharmacological approach that has shown very promising results in the therapy of AD in pilot clinical and animal studies.
View Article and Find Full Text PDFThe global number of people with Alzheimer's disease (AD) doubles every 5 years. It has been established that unless an effective treatment for AD is found, the incidence of AD will triple by 2060. However, pharmacological therapies for AD have failed to show effectiveness and safety.
View Article and Find Full Text PDFThe progress in brain diseases treatment is limited by the blood-brain barrier (BBB), which prevents delivery of the vast majority of drugs from the blood into the brain. In this study, we discover unknown phenomenon of opening of the BBBB (BBBO) by low-level laser treatment (LLLT, 1268 nm) in the mouse cortex. LLLT-BBBO is accompanied by activation of the brain drainage system contributing effective delivery of liposomes into glioblastoma (GBM).
View Article and Find Full Text PDFEmerging evidence suggests that an important function of the sleeping brain is the removal of wastes and toxins from the central nervous system (CNS) due to the activation of the brain waste removal system (BWRS). The meningeal lymphatic vessels (MLVs) are an important part of the BWRS. A decrease in MLV function is associated with Alzheimer's and Parkinson's diseases, intracranial hemorrhages, brain tumors and trauma.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) limits the delivery of majority of cancer drugs and thereby complicates brain tumor treatment. The nasal-brain-lymphatic system is discussed as a pathway for brain drug delivery overcoming the BBB. However, in most cases, this method is not sufficient to achieve a therapeutic effect due to brain drug delivery in a short distance.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) poses a significant challenge for drug delivery to the brain. Therefore, the development of safe methods for an effective delivery of medications to the brain can be a revolutionary step in overcoming this limitation. Using a quantum-dot-based 1267 nm laser (photosensitiser-free generation of singlet oxygen), we clearly show the photostimulation of lymphatic delivery of bevacizumab (BMZ) to the brain tissues and the meninges.
View Article and Find Full Text PDFBackground: The development of new methods for modulation of drug distribution across to the brain is a crucial step in the effective therapies for glioblastoma (GBM). In our previous work, we discovered the phenomenon of music-induced opening of the blood-brain barrier (OBBB) in healthy rodents. In this pilot study on rats, we clearly demonstrate that music-induced BBB opening improves the therapeutic effects of bevacizumab (BZM) in rats with GBM increasing BZM distribution to the brain along the cerebral vessels.
View Article and Find Full Text PDFBackground: The development of new methods of drug brain delivery is a crucial step for the effective therapy of the brain diseases. Pharma- and acupuncture are the forms of alternative therapy of the brain pathology, including an increase in the permeability of blood-brain barrier. However, the mechanisms of pharma- and acupuncture-mediated effects on the brain physiology remain not fully understood.
View Article and Find Full Text PDFThe deposition of amyloid-β (Aβ) in the brain is a risk factor for Alzheimer's disease (AD). Therefore, new strategies for the stimulation of Aβ clearance from the brain can be useful in preventing AD. Transcranial photostimulation (PS) is considered a promising method for AD therapy.
View Article and Find Full Text PDFThe effects of light-driven enhancement of Evans Blue dye complexes with blood plasma proteins were observed for the first time, both in vitro and in vivo. The possible background of the effect concerns the photochemical cis-trans isomerization of the azo dye molecules. The effect was induced in the solution with a red laser with a wavelength of 638 nm, which corresponds to the peak of the dye absorption.
View Article and Find Full Text PDFA new application of the photodynamic treatment (PDT) is presented for the opening of blood-brain barrier (BBB) and the brain clearing activation that is associated with it, including the use of gold nanoparticles as emerging photosensitizer carriers in PDT. The obtained results clearly demonstrate 2 pathways for the brain clearing: (1) using PDT-opening of BBB and intravenous injection of FITC-dextran we showed a clearance of this tracer via the meningeal lymphatic system in the subdural space; (2) using optical coherence tomography and intraparenchymal injection of gold nanorods, we observed their clearance through the exit gate of cerebral spinal fluid from the brain into the deep cervical lymph node, where the gold nanorods were accumulated. These data contribute to a better understanding of the cerebrovascular effects of PDT and shed light on mechanisms, underlying brain clearing after PDT-related opening of BBB, including clearance from nanoparticles as drug carriers.
View Article and Find Full Text PDFRemote navigation and targeted delivery of biologically active compounds is one of the current challenges in the development of drug delivery systems. Modern methods of micro- and nanofabrication give us new opportunities to produce particles and capsules bearing cargo to deploy and possess magnetic properties to be externally navigated. In this work we explore multilayer composite magnetic microcapsules as targeted delivery systems in vitro and in vivo studies under natural conditions of living organism.
View Article and Find Full Text PDFWe studied the level of blood oxygen saturation (SpO2) in the brain in newborn rats in the pre- and post-stroke periods, as well as the changes in cerebral blood flow and beta-arrestin-1 as a marker of hypoxic stress. Our results show that mild hypoxia precedes the stroke development and is associated with venous relaxation and decrease blood outflow from the brain resulting in the elevation of synthesis of beta-arrestin-1 in the brain. The incidence of stroke is characterized by severe hypoxia, which is accompanied by the progression of pathological changes in cerebral veins and the high level of beta-arrestin-1.
View Article and Find Full Text PDFIn this study, we analyzed the time-depended scenario of stress response cascade preceding and accompanying brain hemorrhages in newborn rats using an interdisciplinary approach based on: a morphological analysis of brain tissues, coherent-domain optical technologies for visualization of the cerebral blood flow, monitoring of the cerebral oxygenation and the deformability of red blood cells (RBCs). Using a model of stress-induced brain hemorrhages (sound stress, 120 dB, 370 Hz), we studied changes in neonatal brain 2, 4, 6, 8 h after stress (the pre-hemorrhage, latent period) and 24 h after stress (the post-hemorrhage period). We found that latent period of brain hemorrhages is accompanied by gradual pathological changes in systemic, metabolic, and cellular levels of stress.
View Article and Find Full Text PDF