Newborn screening (NBS) is an important public health program that aims to identify pre-symptomatic healthy babies that will develop significant disease if left undiagnosed and untreated. The number of conditions being screened globally is expanding rapidly in parallel with advances in technology, diagnosis, and treatment availability for these conditions. In Hong Kong, NBS for inborn errors of metabolism (NBSIEM) began as a pilot program in October 2015 and was implemented to all birthing hospitals within the public healthcare system in phases, with completion in October 2020.
View Article and Find Full Text PDFSingle gene disorders are individually rare but collectively common leading causes of neonatal and pediatric morbidity and mortality. Both parents or the mothers of affected individuals with autosomal recessive or X-linked recessive diseases, respectively, are carrier(s). Carrier frequencies of recessive diseases can vary drastically among different ethnicities.
View Article and Find Full Text PDFStructural variations (SVs) are various types of the genomic rearrangements encompassing at least 50 nucleotides. These include unbalanced gains or losses of DNA segments (copy number changes, CNVs), balanced rearrangements (such as inversion or translocations), and complex combinations of several distinct rearrangements. SVs are known to play a significant role in contributing to human genomic disorders by disrupting the protein-coding genes or the interaction(s) with cis-regulatory elements.
View Article and Find Full Text PDFBackground: The application of long-read sequencing using the Oxford Nanopore Technologies (ONT) MinION sequencer is getting more diverse in the medical field. Having a high sequencing error of ONT and limited throughput from a single MinION flowcell, however, limits its applicability for accurate variant detection. Medical exome sequencing (MES) targets clinically significant exon regions, allowing rapid and comprehensive screening of pathogenic variants.
View Article and Find Full Text PDFHKG is the first fully accessible variant database for Hong Kong Cantonese, constructed from 205 novel whole-exome sequencing data. There has long been a research gap in the understanding of the genetic architecture of southern Chinese subgroups, including Hong Kong Cantonese. HKG detected 196 325 high-quality variants with 5.
View Article and Find Full Text PDFCTNNB1-related disorder is an autosomal dominant neurodevelopmental disorder characterized by a variable degree of cognitive impairment, microcephaly, truncal hypotonia, peripheral spasticity, visual defects, and dysmorphic features. In this case series, we report the clinical and molecular findings of nine Chinese patients affected by CTNNB1-related disorders. The facial features of these affected individuals appear to resemble what had been previously described, with thin upper lip (77.
View Article and Find Full Text PDFBainbridge-Ropers syndrome (BRPS) [OMIM#615485] is a neurodevelopmental disorder, characterized by delayed psychomotor development with generalized hypotonia, intellectual disability with poor or absent speech, feeding difficulties, growth failure, specific craniofacial and minor skeletal features. It was firstly reported in 2013 by Bainbridge et al., who observed a group of individuals sharing overlapping features with Bohring-Opitz syndrome which were caused by pathogenic variant in ASXL1, who indeed carried truncating mutations in ASXL3.
View Article and Find Full Text PDFSchuurs-Hoeijmakers syndrome (SHS) is a rare syndrome involving a de novo variant in the PACS1 gene on chromosome 11q13. There are 36 individuals published in the literature so far, mostly diagnosed postnatally (34/36) after recognizing the typical facial features co-occurring with developmental delay, intellectual disability, and multiple malformations. Herein, we present one prenatal and 15 postnatal cases with the recurrent heterozygous pathogenic variant NM_018026.
View Article and Find Full Text PDFMosaic variegated aneuploidy (MVA) is a rare genetic disorder caused by mutations in , or . We describe the prenatal diagnosis, molecular characterization, and clinical management of a long-lived patient with -related MVA.
View Article and Find Full Text PDFPTEN is a tumor suppressor gene inactivated in over 30% of human cancers. It encodes a lipid phosphatase that serves as a gatekeeper of the phosphoinositide 3-kinase signaling pathway. Germline mutation frequently occurs in this gene in patients diagnosed with PTEN Hamartoma Tumor Syndrome (PHTS).
View Article and Find Full Text PDFAcromelic dysplasia is a heterogeneous group of rare skeletal dysplasias characterized by distal limb shortening. Weill-Marchesani syndrome (WMS), Geleophysic dysplasia (GD) and Acromicric dysplasia (AD) are clinically distinct entities within this group of disorders and are characterized by short stature, short hands, stiff joints, skin thickening, facial anomalies, normal intelligence and skeletal abnormalities. Mutations of the Fibrillin-1 (FBN1) gene have been reported to cause AD, GD and related phenotypes.
View Article and Find Full Text PDFBackground: Chromosomal microarray (CMA) is currently the first-tier genetic test for patients with idiopathic neuropsychiatric diseases in many countries. Its improved diagnostic yield over karyotyping and other molecular testing facilitates the identification of the underlying causes of neuropsychiatric diseases. In this study, we applied oligonucleotide array comparative genomic hybridization as the molecular genetic test in a Chinese cohort of children with DD/ID, autism or MCA.
View Article and Find Full Text PDFThe RASopathies are a relatively common group of phenotypically similar and genetically related autosomal dominant genetic syndromes caused by missense mutations affecting genes participating in the RAS/mitogen-activated protein kinase (MAPK) pathway that include Noonan syndrome (NS) and Noonan syndrome with multiple lentigines (NSML, formerly LEOPARD syndrome). NS and NSML can be difficult to differentiate during infancy, but the presence of multiple lentigines, café au lait spots, and specific cardiac defects facilitate the diagnosis. Furthermore, individual PTPN11 missense mutations are highly specific to each syndrome and engender opposite biochemical alterations on the function of SHP-2, the protein product of that gene.
View Article and Find Full Text PDFBackground: Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive, allelic disorders. This study was conducted to look into the spectrum of DMD gene mutations in Hong Kong Chinese patients with Duchenne or Becker muscular dystrophy (DMD/BMD), and to study genotype-phenotype correlation.
Methods: A retrospective review of 67 patients.