Publications by authors named "Ivan E Starodubtsev"

CD109 antigen on the endothelial cell surface plays an important role in vascular pathology. The aim of the work was to investigate the effect of the immobilization of CD109 antigen with specific antibodies on nanomechanical properties of human umbilical endothelial cells (HUVECs) using atomic force microscopy in quantitative nanomechanical property mapping mode (PeakForce QNM). Anti-CD109 antibodies induced significant stiffening of the cell surface Me(LQ; UQ): in 1.

View Article and Find Full Text PDF

Endothelial cells, due to heterogeneity in the cell structure, can potentially form an inhomogeneous on structural and mechanical properties of the inner layer of the capillaries. Using quantitative nanomechanical mapping mode of atomic force microscopy, the parameters of the structural, elastic, and adhesive properties of the cell surface for living and glutaraldehyde-fixed human umbilical vein endothelial cells were studied. A significant difference in the studied parameters for three cell surface zones (peripheral, perinuclear, and nuclear zones) was established.

View Article and Find Full Text PDF

Hereditary spherocytosis (HS), an erythrocyte membranopathy, is a heterogeneous disease, even at the level of the erythrocyte population. The paper aims at studying the mechanical properties (the Young's modulus, median and RMS roughness of friction force maps; fractal dimension, lacunarity and spatial distribution parameters of lateral force maps) of the cell surface layer of the erythrocytes of two different morphologies (discocytes and spherocytes) in HS using atomic force microscopy. The results of spatial-spectral and fractal analysis showed that the mechanical property maps of the HS spherocyte surface were more structurally homogeneous compared to the maps of HS discocytes.

View Article and Find Full Text PDF

Fractal dimension (D) is one of the important parameters in the description of object's properties in different fields including biology and medicine. The present paper is focused on the application of the fractal dimension (the box counting dimension) in the analysis of the properties of cell surface on the base of its images obtained by atomic force microscopy (AFM). Fractal dimension of digital 3D AFM images depends on interpoint distances determined by the scanning step in the XY-plane and Z-scale factor t.

View Article and Find Full Text PDF