Publications by authors named "Ivan D Welsh"

Recently, substantial research efforts have gone into bridging the accuracy-efficiency gap between parameterized force field models and quantum chemical calculations by extracting molecule-specific force fields directly from ab initio data in a robust and automated manner. One of the challenging aspects is deriving localized atomic polarizabilities for pairwise distributed dispersion models. The Tkatchenko-Scheffler model is based upon correcting free-atom C coefficients according to the square of the ratio of the atom-in-molecule volume to the free-atom volume.

View Article and Find Full Text PDF

Increasing the temperature of a chemical system generally causes covalent bonds to lengthen and weaken, often the first step in initiating chemical reactions. However, for some hydrogen-bonded systems, infrared (IR) spectroscopy measurements reveal that covalent O-H bonds actually strengthen and therefore shorten when heated. In 1957, Finch and Lippincott proposed a simple one-dimensional (1D) model to explain this effect, in which thermal excitation of intermolecular stretching modes leads to lengthening and weakening of intermolecular O-H···O hydrogen bonds, thereby indirectly strengthening the associated covalent O-H bonds.

View Article and Find Full Text PDF

Ionic liquids (ILs) containing sufficiently long alkyl chains form amphiphilic nanostructures with well-defined polar and non-polar domains. Here we have explored the robustness of these amphiphilic nanostructures to added solutes and gained insight into how the nature of the solute and IL ions affect the partitioning of these solutes within the nanostructured domains of ILs. To achieve this, small angle X-ray scattering (SAXS) investigations were performed and discussed for mixtures of 9 different molecular compounds with 6 different ILs containing imidazolium cations.

View Article and Find Full Text PDF

Molecular simulations allow investigation of the structure, dynamics and thermodynamics of molecules at an atomic level of detail, and as such, are becoming increasingly important across many areas of science. As the range of applications increases, so does the variety of molecules. Simulation of a new type of molecule requires generation of parameters that result in accurate representation of the behavior of that molecule, and, in most cases, are compatible with existing parameter sets.

View Article and Find Full Text PDF

Bond orders and formal charges are fundamental chemical descriptors. In cheminformatic applications it is necessary to be able to assign these properties to a given molecular structure automatically, given minimal input information. Here we describe a method for determining the bond order and formal charge assignments from only the atom types and connectivity.

View Article and Find Full Text PDF

The development of luminescent surfaces is an active area of supramolecular chemistry, particularly for the development of new sensing platforms. One particularly useful surface deposition method is the Langmuir-Blodgett technique where organic amphiphilic fluorophores (e.g.

View Article and Find Full Text PDF