The standard approach in accounting for hierarchical differentiation in biology and the social sciences considers a hierarchy as a static distribution of individuals possessing differing amounts of some valued commodity, assumes that the hierarchy is generated by micro-level processes involving individuals, and attempts to reverse engineer the processes that produced the hierarchy. However, sufficient experimental and analytical results are available to evaluate this standard approach in the case of animal dominance hierarchies (pecking orders). Our evaluation using evidence from hierarchy formation in small groups of both hens and cichlid fish reveals significant deficiencies in the three tenets of the standard approach in accounting for the organization of dominance hierarchies.
View Article and Find Full Text PDFUsing aggressive behavior, animals of many species establish dominance hierarchies in both nature and the laboratory. Rank in these hierarchies influences many aspects of animals' lives including their health, physiology, weight gain, genetic expression, and ability to reproduce and raise viable offspring. In this chapter, we define dominance relationships and dominance hierarchies, discuss several model species used in dominance studies, and consider factors that predict the outcomes of dominance encounters in dyads and small groups of animals.
View Article and Find Full Text PDFBull Math Biol
April 2009
We review winner-loser models, the currently popular explanation for the occurrence of linear dominance hierarchies, via a three-part approach. (1) We isolate the two most significant components of the mathematical formulation of three of the most widely-cited models and rigorously evaluate the components' predictions against data collected on hierarchy formation in groups of hens. (2) We evaluate the experimental support in the literature for the basic assumptions contained in winner-loser models.
View Article and Find Full Text PDFFront Zool
November 2006
Background: Researchers have developed a variety of techniques for the visual presentation of quantitative data. These techniques can help to reveal trends and regularities that would be difficult to see if the data were left in raw form. Such techniques can be of great help in exploratory data analysis, making apparent the organization of data sets, developing new hypotheses, and in selecting effects to be tested by statistical analysis.
View Article and Find Full Text PDFLinear hierarchies, the classical pecking-order structures, are formed readily in both nature and the laboratory in a great range of species including humans. However, the probability of getting linear structures by chance alone is quite low. In this paper we investigate the two hypotheses that are proposed most often to explain linear hierarchies: they are predetermined by differences in the attributes of animals, or they are produced by the dynamics of social interaction, i.
View Article and Find Full Text PDF