Publications by authors named "Ivan Casaburi"

Article Synopsis
  • AR expression in ER+ breast cancer is linked to lower tumor grades and improved clinical outcomes, suggesting a protective role in tumor progression.
  • Androgens activate the androgen receptor, which increases levels of the protein BAD, enhancing its presence in both the nucleus and mitochondria, further supporting its role as a cell cycle inhibitor.
  • BAD interacts with the androgen receptor in the nucleus, influencing cyclin D1 promoter activity, while its localization in mitochondria is associated with reduced mitochondrial function, contributing to the anti-proliferative effects of androgens in breast cancer cells.
View Article and Find Full Text PDF

Extensive research suggests that curcumin interferes with multiple cell signaling pathways involved in cancer development and progression. This study aimed to evaluate curcumin effects on adrenocortical carcinoma (ACC), a rare but very aggressive tumor. Curcumin reduced growth, migration and activated apoptosis in three different ACC cell lines, H295R, SW13, MUC-1.

View Article and Find Full Text PDF

The aim of this study was to investigate the metabolic changes that occur in adrenocortical cancer (ACC) cells in response to the modulation of Estrogen Related Receptor (ERR)α expression and the impact on ACC progression. Proteomics analysis and metabolic profiling highlighted an important role for ERRα in the regulation of ACC metabolism. Stable ERRα overexpression in H295R cells promoted a better mitochondrial fitness and prompted toward a more aggressive phenotype characterized by higher Vimentin expression, enhanced cell migration and spheroids formation.

View Article and Find Full Text PDF
Article Synopsis
  • Cholesterol influences the growth of breast cancer, particularly in estrogen receptor-negative (ER-) types, by being converted into 27-hydroxycholesterol (27HC), which is linked to increased cell proliferation.
  • Cells silenced for CYP7B1 (an enzyme that metabolizes 27HC) show heightened growth, especially when deprived of certain lipoproteins, highlighting cholesterol's role in breast cancer proliferation.
  • 27HC acts as a ligand for the G Protein-Coupled Estrogen Receptor (GPER), activating pathways like ERK1/2 and NFκB, and its effects on cancer growth depend on the expression of GPER.
View Article and Find Full Text PDF

It is known that estrogen stimulates growth and inhibits apoptosis through estrogen receptor(ER)-mediated mechanisms in many cancer cell types. Interestingly, there is strong evidence that estrogens can also induce apoptosis, activating different ER isoforms in cancer cells. It has been observed that E2/ERα complex activates multiple pathways involved in both cell cycle progression and apoptotic cascade prevention, while E2/ERβ complex in many cases directs the cells to apoptosis.

View Article and Find Full Text PDF

Resistance to endocrine therapy is still a major clinical challenge in the management of estrogen receptor α-positive (ERα+) breast cancer (BC). Here, the role of the Forkhead box class O (FoxO)3a transcription factor in tumor progression has been evaluated in tamoxifen-resistant BC cells (TamR), expressing lower levels of FoxO3a compared to sensitive ones. FoxO3a re-expression reduces TamR motility (wound-healing and transmigration assays) and invasiveness (matrigel transwell invasion assays) through the mRNA (qRT-PCR) and protein (Western blot) induction of the integrin α5 subunit of the α5β1 fibronectin receptor, a well-known membrane heterodimer controlling cell adhesion and signaling.

View Article and Find Full Text PDF

Curcumin, a main bioactive component of the L. rhizome, is a phenolic compound that exerts a wide range of beneficial effects, acting as an antimicrobial, antioxidant, anti-inflammatory and anticancer agent. This review summarizes recent data on curcumin's ability to interfere with the multiple cell signaling pathways involved in cell cycle regulation, apoptosis and the migration of several cancer cell types.

View Article and Find Full Text PDF

Adrenocortical cancer (ACC) is a rare tumour with unfavourable prognosis, lacking an effective treatment. This tumour is characterized by IGF-II (insulin-like growth factor II) overproduction, aromatase and ERα (oestrogen receptor alpha) up-regulation. Previous reports suggest that ERα expression can be regulated by sirt1 (sirtuin 1), a nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylases that modulates activity of several substrates involved in cellular stress, metabolism, proliferation, senescence, protein degradation and apoptosis.

View Article and Find Full Text PDF

Mitotane causes hypercholesterolemia in patients with adrenocortical carcinoma (ACC). We suppose that cholesterol increases within the tumor and can be used to activate proliferative pathways. In this study, we used statins to decrease intratumor cholesterol and investigated the effects on ACC growth related to estrogen receptor α (ERα) action at the nuclear and mitochondrial levels.

View Article and Find Full Text PDF

Purpose: Solid tumors exhibit an altered redox state in comparison with normal tissues due to tumor hypoxia, lower pH, and elevated levels of the tripeptide glutathione. This study describes the preparation of functional redox-responsive nanoparticles proposed as delivery vehicle of Doxorubicin in adrenocortical cancer in vitro.

Methods: Curcumin and Lipoic acid were conjugated to Human Serum Albumin and nanoparticle systems were prepared via a modified desolvation method.

View Article and Find Full Text PDF

Background: Androgens, through their own receptor, play a protective role on breast tumor development and progression and counterbalance estrogen-dependent growth stimuli which are intimately linked to breast carcinogenesis.

Methods: Cell counting by trypan blu exclusion was used to study androgen effect on estrogen-dependent breast tumor growth. Quantitative Real Time RT-PCR, western blotting, transient transfection, protein immunoprecipitation and chromatin immunoprecipitation assays were carried out to investigate how androgen treatment and/or androgen receptor overexpression influences the functional interaction between the steroid receptor coactivator AIB1 and the estrogen- or androgen receptor which, in turn affects the estrogen-induced cyclin D1 gene expression in MCF-7 breast cancer cells.

View Article and Find Full Text PDF

In the present work, the anti-proliferative and anti-bacterial activities of three semi-synthetic benzoate pinocembrin derivatives, isolated from the aerial parts of L., were investigated. As occurs in most natural compounds, the bioavailability of pinocembrin is very poor, therefore it should be improved by chemical strategies aimed to prolong its shelf life and, consequently, its activity.

View Article and Find Full Text PDF

Resveratrol (3,5,4'-trihydroxystilbene; RSV) is a natural nonflavonoid polyphenol present in many species of plants, particularly in grapes, blueberries, and peanuts. Several in vitro and in vivo studies have shown that in addition to antioxidant, anti-inflammatory, cardioprotective and neuroprotective actions, it exhibits antitumor properties. In mammalian models, RSV is extensively metabolized and rapidly eliminated and therefore it shows a poor bioavailability, in spite it of its lipophilic nature.

View Article and Find Full Text PDF

Extensive research over the past 25 years in hormone-dependent cancers, such as breast cancer and prostate cancer, has identified the molecular mechanisms driven by steroid receptors, elucidating the interplay between genomic and non-genomic steroid receptors mechanism of action. Altogether, these mechanisms create the specific gene expression programs that contribute to endocrine therapy resistance and cancer progression. These findings, on the bidirectional molecular crosstalk between steroid and growth factor receptors pathways in endocrine resistance, suggest the use of multi-target inhibitors together with endocrine therapies, for treating resistant disease.

View Article and Find Full Text PDF

Cholesterol is essential for cell function and viability. It is a component of the plasma membrane and lipid rafts and is a precursor for bile acids, steroid hormones, and Vitamin D. As a ligand for estrogen-related receptor alpha (ESRRA), cholesterol becomes a signaling molecule.

View Article and Find Full Text PDF

The estrogen-related receptors (ERRs) are important members of nuclear receptors which contain three isoforms (α, β, and γ). ERRα is the best-characterized isoform expressed mainly in high-energy demanding tissues where it preferentially works in association with the peroxisome proliferator-activated receptor-γ co-activator 1α (PGC-1α) and PGC-1β. ERRα together with its cofactors modulates cellular metabolism, supports the growth of rapidly dividing cells, directs metabolic programs required for cell differentiation and maintains cellular energy homeostasis in differentiated cells.

View Article and Find Full Text PDF

pH-responsive polymersomes were obtained by self-assembling of a carboxyl-terminated PEG amphiphile achieved via esterification of PEG diacid with PEG40stearate. The obtained vesicular systems had spherical shape and a mean diameter of 70 nm. The pH sensitivity was assessed by measuring the variations of particles mean diameter after incubation in media mimicking the physiological (pH 7.

View Article and Find Full Text PDF

We previously demonstrated that treatment of the H295R adrenocortical cancer cell line with the non-steroidal, high-affinity GPER (G protein-coupled estrogen receptor 1) agonist G-1 reduced tumor growth and through a GPER independent action. Moreover, we observed that G-1 treatment induces cell-cycle arrest and apoptosis following a sustained ERK1/2 activation. However, the precise mechanisms causing these effects were not clarified.

View Article and Find Full Text PDF

PELP1 acts as an estrogen receptor (ER) coactivator that exerts an essential role in the ER's functions. ER coregulators have a critical role in the progression and response to hormonal treatment of estrogen-dependent tumors. We previously demonstrated that, in adrenocortical carcinoma (ACC), ERα is upregulated and that estradiol activates the IGF-II/IGF1R signaling pathways defining the role of this functional cross-talk in H295R ACC cell proliferation.

View Article and Find Full Text PDF

Although the protective role of androgen receptor (AR) in breast cancer (BC) is well established, the mechanisms involved remains largely unexplored. MicroRNAs play fundamental roles in many biological processes, including tumor cell development and metastasis. Herein, we report that androgens reduce BC cells proliferation acting as a negative modulator of the onco-miRNA-21.

View Article and Find Full Text PDF

The pathogenesis of the adrenocortical cancer (ACC) involves integration of molecular signals and the interplay of different downstream pathways (i.e. IGFII/IGF1R, β-catenin, Wnt, ESR1).

View Article and Find Full Text PDF

We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER).

View Article and Find Full Text PDF

Estrogens play important roles in the regulation of testis development and spermatogenesis. Moreover, several evidences suggest that estrogen signaling can be involved in testicular tumorigenesis. The physiological effects of estrogen are mediated by the classical nuclear estrogen receptors ESR1 and 2, which regulate both genomic and rapid signaling events.

View Article and Find Full Text PDF

Male reproductive function is under the control of both gonadotropins and androgens through a negative feedback loop that involves the hypothalamus, pituitary, and testis known as hypothalamus-pituitary-gonadal axis (HPG). Indeed, estrogens also play an important role in regulating HPG axis but the study on relative contribution to the inhibition of gonadotropins secretion exerted by the amount of estrogens produced within the hypothalamus and/or the pituitary or by the amount of circulating estrogens is still ongoing. Moreover, it is known that the maintenance of spermatogenesis is controlled by gonadotropins and testosterone, the effects of which are modulated by a complex network of locally produced factors, including estrogens.

View Article and Find Full Text PDF