A human aorta from a female donor affected by Klippel-Trenaunay syndrome was retrieved during a surgery for organ donation for transplant. The aorta was preserved in refrigerated Belzer UW organ preservation solution and tested within a few hours for mechanical characterization with and without vascular smooth muscle activation. KCl and Noradrenaline were used as vasoactive agents in bubbled Krebs-Henseleit buffer solution at 37 °C.
View Article and Find Full Text PDFDecellularized porcine aortas are proposed as scaffolds for revolutionary active aortic grafts. A change in the static and dynamic mechanical properties, associated with the microstructure of elastin and collagen fibers, corresponds to alteration in the cyclic expansion and perfusion, in addition to possible graft damage. Therefore, the present study thoroughly investigates the mechanical response of the decellularized scaffolds of human and porcine origin to static and dynamic mechanical loads.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
February 2023
The authors have observed that a stress-strain curve for uniaxial tension of an aortic intact wall cannot be simply obtained by combining the strain energy functions of the three individual aortic layers - intima, media and adventitia - even taking into account the interaction among the three layers; the strain energy functions of the three layers are obtained fitting tensile tests on strips from the individual layers. Due to the layer separation, the residual stresses are released and thus they do not affect the stress-strain curves of the individual layers. The present study shows that it is instead possible to fit the intact wall experimental curves with the combination of the strain energy functions of the three individual layers if residual strains are added.
View Article and Find Full Text PDFExperimental data and a suitable material model for human aortas with smooth muscle activation are not available in the literature despite the need for developing advanced grafts; the present study closes this gap. Mechanical characterization of human descending thoracic aortas was performed with and without vascular smooth muscle (VSM) activation. Specimens were taken from 13 heart-beating donors.
View Article and Find Full Text PDFThe mechanical properties of human aortas are linked to the layered tissue and its microstructure at different length scales. Each layer has specific mechanical and structural properties. While the ground substance and the elastin play an important role in tissue stiffness at small strain, collagen fibers carry most of the load at larger strains, which corresponds to the physiological conditions of the aorta at maximum pulsatile blood pressure.
View Article and Find Full Text PDFExperiments were carried out on 15 human descending thoracic aortas from heart-beating healthy donors who donated organs for transplant. The aortas were kept refrigerated in organ preservation solution and tested were completed within 48 hours from explant. Donors' age was comprised between 25 and 70 years, with an average of 51.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2020
The effect of the exclusion of the compressed fibers in the identification of material parameters from uniaxial tensile tests on two orthogonal strips is investigated. The micro-structurally based constitutive model with two dispersion parameters developed by Holzapfel and his colleagues is utilized in the study. A new exclusion method, based on the coefficient reflecting the percentage of stretched fibers, is proposed.
View Article and Find Full Text PDFAortic dissection is one of the most lethal cardiovascular diseases. A chronic Type A (Stanford) dissected aorta was retrieved for research from a 73-year-old male donor without diagnosed genetic disease. The aorta presented a dissection over the full length, and it reached a diameter of 7.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
November 2019
The generalized fractional Maxwell model, formulated for hyperelastic material within the framework of the nonlinear viscoelasticity with internal variables, is applied to identify viscoelastic constitutive equations from layer-specific experimental data obtained by uniaxial harmonic loading of ex-vivo human descending thoracic aortas. The constitutive parameters are identified by using a genetic algorithm for the optimal fitting of the experimental data. The accuracy of the fitted fractional model is compared to the fitted integer order model with the same number of Maxwell elements.
View Article and Find Full Text PDFA layer-specific hyperelastic and viscoelastic characterization of human descending thoracic aortas was experimentally performed. Healthy aortas from twelve beating heart donors with an average age of 49.4 years, were received from Transplant Québec.
View Article and Find Full Text PDFBiomech Model Mechanobiol
December 2018
The nonlinear static deformation of human descending thoracic aortic segments is investigated. The aorta segments are modeled as straight axisymmetric circular cylindrical shells with three hyperelastic anisotropic layers and residual stresses by using an advanced nonlinear shell theory with higher-order thickness deformation not available in commercial finite element codes. The residual stresses are evaluated in the closed configuration in an original way making use of the multiplicative decomposition.
View Article and Find Full Text PDFIn case of direction-dependent viscoelasticity, a simplified formulation of the three-dimensional quasi-linear viscoelasticity has been obtained manipulating the original Fung equation. The experimental characterization of the static hyperelastic behaviour, the relaxation, the dynamic modulus and the loss factor of woven Dacron from a commercial aortic prosthesis has been performed. An 11% difference of the reduced relaxation (after infinite time) between axial and circumferential directions has been observed for the woven Dacron.
View Article and Find Full Text PDF