Publications by authors named "Ivan Andonovic"

Existing methods to obtain position from inertial sensors typically use a combination of multiple sensors and orientation modeling; thus, obtaining position from a single inertial sensor is highly desirable given the decreased setup time and reduced complexity. The dead reckoning method is commonly chosen to obtain position from acceleration; however, when applied to upper limb tracking, the accuracy of position estimates are questionable, which limits feasibility. A new method of obtaining position estimates through the use of zero velocity updates is reported, using a commercial IMU, a push-to-make momentary switch, and a 3D printed object to house the sensors.

View Article and Find Full Text PDF

There are several image inverse tasks, such as inpainting or super-resolution, which can be solved using deep internal learning, a paradigm that involves employing deep neural networks to find a solution by learning from the sample itself rather than a dataset. For example, Deep Image Prior is a technique based on fitting a convolutional neural network to output the known parts of the image (such as non-inpainted regions or a low-resolution version of the image). However, this approach is not well adjusted for samples composed of multiple modalities.

View Article and Find Full Text PDF

This paper reports on the use of estimates of individual animal feed intake (made using time spent feeding measurements) to predict the Feed Conversion Ratio (FCR), a measure of the amount of feed consumed to produce 1 kg of body mass, for an individual animal. Reported research to date has evaluated the ability of statistical methods to predict daily feed intake based on measurements of time spent feeding measured using electronic feeding systems. The study collated data of the time spent eating for 80 beef animals over a 56-day period as the basis for the prediction of feed intake.

View Article and Find Full Text PDF

Deep learning (DL) enables the creation of computational models comprising multiple processing layers that learn data representations at multiple levels of abstraction. In the recent past, the use of deep learning has been proliferating, yielding promising results in applications across a growing number of fields, most notably in image processing, medical image analysis, data analysis, and bioinformatics. DL algorithms have also had a significant positive impact through yielding improvements in screening, recognition, segmentation, prediction, and classification applications across different domains of healthcare, such as those concerning the abdomen, cardiac, pathology, and retina.

View Article and Find Full Text PDF

Movement sonification is emerging as a useful tool for rehabilitation, with increasing evidence in support of its use. To create such a system requires component considerations outside of typical sonification design choices, such as the dimension of movement to sonify, section of anatomy to track, and methodology of motion capture. This review takes this emerging and highly diverse area of literature and keyword-code existing real-time movement sonification systems, to analyze and highlight current trends in these design choices, as such providing an overview of existing systems.

View Article and Find Full Text PDF

Monitoring and classification of dairy cattle behaviours is essential for optimising milk yields. Early detection of illness, days before the critical conditions occur, together with automatic detection of the onset of oestrus cycles is crucial for obviating prolonged cattle treatments and improving the pregnancy rates. Accelerometer-based sensor systems are becoming increasingly popular, as they are automatically providing information about key cattle behaviours such as the level of restlessness and the time spent ruminating and eating, proxy measurements that indicate the onset of heat events and overall welfare, at an individual animal level.

View Article and Find Full Text PDF

Movement is prospective. It structures self-generated engagement with objects and social partners and is fundamental to children's learning and development. In autistic children, previous reports of differences in movement kinematics compared to neurotypical peers suggest that its prospective organisation might be disrupted.

View Article and Find Full Text PDF

A growing portfolio of research has been reported on the use of machine learning-based architectures and models in the domain of healthcare. The development of data-driven applications and services for the diagnosis and classification of key illness conditions is challenging owing to issues of low volume, low-quality contextual data for the training, and validation of algorithms, which, in turn, compromises the accuracy of the resultant models. Here, a fusion machine learning approach is presented reporting an improvement in the accuracy of the identification of diabetes and the prediction of the onset of critical events for patients with diabetes (PwD).

View Article and Find Full Text PDF

Monitoring cattle behaviour is core to the early detection of health and welfare issues and to optimise the fertility of large herds. Accelerometer-based sensor systems that provide activity profiles are now used extensively on commercial farms and have evolved to identify behaviours such as the time spent ruminating and eating at an individual animal level. Acquiring this information at scale is central to informing on-farm management decisions.

View Article and Find Full Text PDF

Delaminations within aerospace composites are of particular concern, presenting within composite laminate structures without visible surface indications. Transmission based thermography techniques using contact temperature sensors and surface mounted heat sources are able to detect reductions in thermal conductivity and in turn impact damage and large disbonds can be detected. However delaminations between Carbon Fibre Reinforced Polymer (CFRP) plies are not immediately discoverable using the technique.

View Article and Find Full Text PDF

Cyber situational awareness has been proven to be of value in forming a comprehensive understanding of threats and vulnerabilities within organisations, as the degree of exposure is governed by the prevailing levels of cyber-hygiene and established processes. A more accurate assessment of the security provision informs on the most vulnerable environments that necessitate more diligent management. The rapid proliferation in the automation of cyber-attacks is reducing the gap between information and operational technologies and the need to review the current levels of robustness against new sophisticated cyber-attacks, trends, technologies and mitigation countermeasures has become pressing.

View Article and Find Full Text PDF

Automated methods for detecting defects within composite materials are highly desirable in the drive to increase throughput, optimise repair program effectiveness and reduce component replacement. Tap-testing has traditionally been used for detecting defects but does not provide quantitative measurements, requiring secondary techniques such as ultrasound to certify components. This paper reports on an evaluation of the use of a distributed temperature measurement system-high-definition fibre optic sensing (HD-FOS)-to identify and characterise crushed core and disbond defects in carbon fibre reinforced polymer (CFRP)-skin, aluminium-core, sandwich panels.

View Article and Find Full Text PDF

Sandwich panels consisting of two Carbon Fibre Reinforced Polymer (CFRP) outer skins and an aluminium honeycomb core are a common structure of surfaces on commercial aircraft due to the beneficial strength-weight ratio. Mechanical defects such as a crushed honeycomb core, dis-bonds and delaminations in the outer skins and in the core occur routinely under normal use and are repaired during aerospace Maintenance, Repair and Overhaul (MRO) processes. Current practices rely heavily on manual inspection where it is possible minor defects are not identified prior to primary repair and are only addressed after initial repairs intensify the defects due to thermal expansion during high temperature curing.

View Article and Find Full Text PDF

The growth in wirelessly enabled sensor network technologies has enabled the low cost deployment of sensor platforms with applications in a range of sectors and communities. In the agricultural domain such sensors have been the foundation for the creation of decision support tools that enhance farm operational efficiency. This Research Reflection illustrates how these advances are assisting dairy farmers to optimise performance and illustrates where emerging sensor technology can offer additional benefits.

View Article and Find Full Text PDF

Fibre orientation within composite structures dictates the material properties of the laminate once cured. The ability to accurately and automatically assess fibre orientation of composite parts is a significant enabler in the goal to optimise the established processes within aftermarket aerospace industries. Incorrect ply lay-up results in a structure with undesirable material properties and as such, has the potential to fail under safe working loads.

View Article and Find Full Text PDF

Regulatory requirements for sub-sea oil and gas operators mandates the frequent inspection of pipeline assets to ensure that their degradation and damage are maintained at acceptable levels. The inspection process is usually sub-contracted to surveyors who utilize sub-sea Remotely Operated Vehicles (ROVs), launched from a surface vessel and piloted over the pipeline. ROVs capture data from various sensors/instruments which are subsequently reviewed and interpreted by human operators, creating a log of event annotations; a slow, labor-intensive and costly process.

View Article and Find Full Text PDF

Besides size and polymorphic form, crystal shape takes a central role in engineering advanced solid materials for the pharmaceutical and chemical industries. This work demonstrates how multiple cycles of growth and dissolution can manipulate the habit of an acetylsalicylic acid crystal population. Considerable changes of the crystal habit could be achieved within minutes due to rapid cycling, i.

View Article and Find Full Text PDF

The reticuloruminal function is central to the digestive efficiency in ruminants. For cattle, collar- and ear tag-based accelerometer monitors have been developed to assess the time spent ruminating on an individual animal. Cattle that are ill feed less and so ruminate less, thus, the estimation of the time spent ruminating provides insights into the health of individual animals.

View Article and Find Full Text PDF

The application of pH observations to clinical practice in dairy cattle is based on criteria derived primarily from single time-point observations more than 20 years ago. The aims of this study were to evaluate these criteria using data collected using continuous recording methods; to make recommendations that might improve their interpretation; and to determine the relationship between the number of devices deployed in a herd and the accuracy of the resulting estimate of the herd-mean reticuloruminal pH. The study made use of 815,475 observations of reticuloruminal pH values obtained from 75 cattle in three herds (one beef and two twice-daily milking herds) to assess sampling strategies for the diagnosis of sub-acute rumen acidosis (SARA), and to evaluate the ability of different numbers of bolus devices to accurately estimate the true herd-mean reticuloruminal pH value at any time.

View Article and Find Full Text PDF