Research on bioactive compounds has grown recently due to their health benefits and limited adverse effects, particularly in reducing the risk of chronic diseases, including neurodegenerative conditions. According to these observations, this study investigates the activity of sulforaphane (RS-GRA) on an in vitro model of differentiated NSC-34 cells. We performed a transcriptomic analysis at various time points (24 h, 48 h, and 72 h) and RS-GRA concentrations (1 µM, 5 µM, and 10 µM) to identify molecular pathways influenced by this compound and the effects of dosage and prolonged exposure.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a long-term neurodegenerative condition that leads to the deterioration of neurons and synapses in the cerebral cortex, resulting in severe dementia. AD is significantly more prevalent in postmenopausal women, suggesting a neuroprotective role for estrogen. Estrogen is now known to regulate a wide array of physiological functions in the body by interacting with three known estrogen receptors (ERs) and with the β-amyloid precursor protein, a key factor in AD pathogenesis.
View Article and Find Full Text PDFAims: This pilot study investigates the potential pathogenic role of G-quadruplex (G4) structures in -associated retinal degeneration, starting from a case of suspected X-linked form affected family. We hypothesize that the stabilization of these structures might alter DNA replication and transcription, inducing genetic instability and influencing gene expression.
Main Methods: We conducted whole genome amplification experiments and next-generation sequencing to detect the blockade of polymerase activity by G4 structures.
Multiple sclerosis (MS) is a degenerative condition characterized by axonal damage and demyelination induced by autoreactive immune cells that occur in the Central Nervous System (CNS). The interaction between epigenetic changes and genetic factors can be widely involved in the onset, development, and progression of the disease. Although numerous efforts were made to discover new therapies able to prevent and improve the course of MS, definitive curative treatments have not been found yet.
View Article and Find Full Text PDFBrain damage can be induced by oxygen deprivation. It is known that hypoxic or anoxic conditions can lead to changes in the expression levels of non-coding RNAs (ncRNAs), which, in turn, can be related to Central Nervous System (CNS) injuries. Therefore, it could be useful to investigate the involvement of non-coding RNAs (ncRNAs), as well as the underlying mechanisms which are able to modulate them in brain damage induced by hypoxic or anoxic conditions.
View Article and Find Full Text PDFCannabinoids, natural or synthetic, have antidepressant, anxiolytic, anticonvulsant, and anti-psychotic properties. Cannabidiol (CBD) and delta-9-tetrahydrocannabinol (Δ-THC) are the most studied cannabinoids, but recently, attention has turned towards minor cannabinoids. Delta-8-tetrahydrocannabinol (Δ-THC), an isomer of Δ-THC, is a compound for which, to date, there is no evidence of its role in the modulation of synaptic pathways.
View Article and Find Full Text PDFCannabigerol (CBG) is a non-psychoactive phytocannabinoid present in the L. plant. In our study, CBG at the concentration of 10 µM was used to treat NSC-34 motor neuron-like cells.
View Article and Find Full Text PDFSpinal cord injury (SCI) is a worldwide highly crippling disease that can lead to the loss of motor and sensory neurons. Among the most promising therapies, there are new techniques of tissue engineering based on stem cells that promote neuronal regeneration. Among the different types of stem cells, mesenchymal stem cells (MSCs) seem the most promising.
View Article and Find Full Text PDF