Introduction: Stroke, the second leading cause of death and disability in Europe, is primarily caused by interrupted blood supply, leading to ischemia-reperfusion (IR) injury and subsequent neuronal death. Current treatment options are limited, highlighting the need for novel therapies. Neural stem cells (NSCs) have shown promise in treating various neurological disorders, including stroke.
View Article and Find Full Text PDFUnderstanding the role of small, soluble aggregates of beta-amyloid (Aβ) and tau in Alzheimer's disease (AD) is of great importance for the rational design of preventative therapies. Here we report a set of methods for the detection, quantification, and characterisation of soluble aggregates in conditioned media of cerebral organoids derived from human iPSCs with trisomy 21, thus containing an extra copy of the amyloid precursor protein (APP) gene. We detected soluble beta-amyloid (Aβ) and tau aggregates secreted by cerebral organoids from both control and the isogenic trisomy 21 (T21) genotype.
View Article and Find Full Text PDFElectrochemical microscopy techniques have extended the understanding of surface chemistry to the micrometer and even sub-micrometer level. However, fundamental questions related to charge transport at the solid-electrolyte interface, such as catalytic reactions or operation of individual ion channels, require improved spatial resolutions down to the nanoscale. A prerequisite for single-molecule electrochemical sensitivity is the reliable detection of a few electrons per second, that is, currents in the atto-Ampere (10 A) range, 1000 times below today's electrochemical microscopes.
View Article and Find Full Text PDFAn electrochemical quartz crystal microbalance (EC-QCM) is a versatile gravimetric technique that allows for parallel characterization of mass deposition and electrochemical properties. Despite its broad applicability, simultaneous characterization of two electrodes remains challenging due to practical difficulties posed by the dampening from fixture parasitics and the dissipative medium. In this study, we present a dual electrochemical QCM (dual EC-QCM) that is employed in a three-electrode configuration to enable consequent monitoring of mass deposition and viscous loading on two crystals, the working electrode (WE) and the counter electrode (CE).
View Article and Find Full Text PDFThis paper reports the development of a new composite material as a matching medium for medical microwave diagnostic systems, where maximizing the microwave energy that penetrates the interrogated tissue is critical for improving the quality of the diagnostic images. The proposed material has several advantages over what is commonly used in microwave diagnostic systems: it is semi-flexible and rigid, and it can maximize microwave energy coupling by matching the tissue's dielectric constant without introducing high loss. The developed matching medium is a mirocomposite of barium titanate filler in polydimethylsiloxane (PDMS) in different weight-based mixing ratios.
View Article and Find Full Text PDFLeukemias are routinely sub-typed for risk/outcome prediction and therapy choice using acquired mutations and chromosomal rearrangements. Down syndrome acute lymphoblastic leukemia (DS-ALL) is characterized by high frequency of CRLF2-rearrangements, JAK2-mutations, or RAS-pathway mutations. Intriguingly, JAK2 and RAS-mutations are mutually exclusive in leukemic sub-clones, causing dichotomy in therapeutic target choices.
View Article and Find Full Text PDFA population of more than six million people worldwide at high risk of Alzheimer's disease (AD) are those with Down Syndrome (DS, caused by trisomy 21 (T21)), 70% of whom develop dementia during lifetime, caused by an extra copy of β-amyloid-(Aβ)-precursor-protein gene. We report AD-like pathology in cerebral organoids grown in vitro from non-invasively sampled strands of hair from 71% of DS donors. The pathology consisted of extracellular diffuse and fibrillar Aβ deposits, hyperphosphorylated/pathologically conformed Tau, and premature neuronal loss.
View Article and Find Full Text PDFDown Syndrome (DS) is a complex chromosomal disorder, with neurological issues, featuring among the symptoms. Primary neuronal cells and tissues are extremely useful, but limited both in supply and experimental manipulability. To better understand the cellular, molecular and pathological mechanisms involved in DS neurodevelopment and neurodegeneration, a range of different cellular models have been developed over the years including human: mouse hybrid cells, transchromosomic mouse embryonic stem cells (ESCs) and human ESC and induced pluripotent stem cells derived from different sources.
View Article and Find Full Text PDFAim: To analyze how neural stem cells (NSC) transplantation in the stroke-affected mouse brain influences the expression of genes involved in apoptosis-inducing factor (AIF)-mediated cell death – apoptosis inducing factor mitochondria associated 1 (), ring finger protein 146 (), and cyclophilin A (); necroptosis –receptor interaction protein kinase 1 (), , and mixed-lineage kinase domain-like protein (); and apoptosis – Caspase 3 () and .
Methods: Four groups of animals were used to obtain mRNA for quantitative reverse transcription polymerase chain reaction analysis: healthy animals (n = 3), animals with stroke (n = 4), animals with stroke treated by stem cell transplantation (n = 7), and animals with stroke treated by proliferation-supporting medium (n = 5). Ischemic brain injury was induced by transient left middle cerebral artery occlusion.
Although transplantation of stem cells improves recovery of the nervous tissue, little is known about the influence of different brain regions on transplanted cells. After we confirmed that cells with uniform differentiation potential can be generated in independent experiments, one million of neural stem cells isolated from B6.Cg-Tg(Thy1-YFP)16Jrs/J mouse embryos were transplanted into the brain 24 h after induction of stroke.
View Article and Find Full Text PDFA reliable method of cell tracing is essential in evaluating potential therapeutic procedures based on stem cell transplantation. Here we present data collected using neural stem cells isolated from a transgenic mouse line Thy1-YFP. When transplanted into a stroke affected brain these cells give rise to neurons that express a fluorescent signal which can be used for their detection and tracing.
View Article and Find Full Text PDFTo analyse events following transplantation of stem cells in the brain robust tools for tracing stem cells are required. Here we took advantage of the mouse strain B6.Cg-Tg(Thy1-YFP)16Jrs/J (Thy1 YFP-16), where yellow fluorescent protein (YFP) is under control of the promoter of Thy1 gene.
View Article and Find Full Text PDFThe nucleolar protein 2 gene encodes a protein specific for the nucleolus. It is assumed that it plays a role in the synthesis of ribosomes and regulation of the cell cycle. Due to its link to cell proliferation, higher expression of Nop2 indicates a worse tumor prognosis.
View Article and Find Full Text PDF