A fine-grained understanding of dynamics in cortical networks is crucial to unpacking brain function. Resting-state functional magnetic resonance imaging (fMRI) gives rise to time series recordings of the activity of different brain regions, which are aperiodic and lack a base frequency. Cyclicity analysis, a novel technique robust under time reparametrizations, is effective in recovering the temporal ordering of such time series, collectively considered components of a multidimensional trajectory.
View Article and Find Full Text PDFThe resting state fMRI time series appears to have cyclic patterns, which indicates presence of cyclic interactions between different brain regions. Such interactions are not easily captured by pre-established resting state functional connectivity methods including zero-lag correlation, lagged correlation, and dynamic time warping distance. These methods formulate the functional interaction between different brain regions as similar temporal patterns within the time series.
View Article and Find Full Text PDFChronic tinnitus is a common and sometimes debilitating condition that lacks scientific consensus on physiological models of how the condition arises as well as any known cure. In this study, we applied a novel cyclicity analysis, which studies patterns of leader-follower relationships between two signals, to resting-state functional magnetic resonance imaging (rs-fMRI) data of brain regions acquired from subjects with and without tinnitus. Using the output from the cyclicity analysis, we were able to differentiate between these two groups with 58-67% accuracy by using a partial least squares discriminant analysis.
View Article and Find Full Text PDF