Neurons expressing agouti-related protein (AgRP) are essential for feeding. The majority of these neurons are located outside the blood-brain barrier (BBB), allowing them to directly sense circulating metabolic factors. Here, we show that, in adult mice, AgRP neurons outside the BBB (AgRP) were rapidly ablated by peripheral administration of monosodium glutamate (MSG), whereas AgRP neurons inside the BBB and most proopiomelanocortin (POMC) neurons were spared.
View Article and Find Full Text PDFBackground: The proper establishment of hypothalamic feeding circuits during early development has a profound influence on energy homeostasis, and perturbing this process could predispose individuals to obesity and its associated consequences later in life. The maturation of hypothalamic neuronal circuitry in rodents takes place during the initial postnatal weeks, and this coincides with a dramatic surge in the circulating level of leptin, which is known to regulate the outgrowth of key neuronal projections in the maturing hypothalamus. Coincidently, this early postnatal period also marks the rapid proliferation and expansion of astrocytes in the brain.
View Article and Find Full Text PDF