After fixing the DNA molecule in the form of a double helix on the surface of a thickness shear mode resonator (QCM), mechanical oscillations at increasing amplitude cause detorsion of the helix. The force necessary for detorsion can be determined from the voltage applied to the QCM at the rupture moment. The high sensitivity of this method is due to the fact that measurements are carried out in the frequency region around the QCM resonance, where any (even very weak) distortions of the consistent oscillating system cause noticeable distortions of the amplitude-frequency dependence, and these distortions are used to fix the rupture moment.
View Article and Find Full Text PDFIt is shown that an increase in the amplitude of QCM shear oscillations during frequency scanning around the resonance frequency is accompanied (at a definite voltage) by distortions in the amplitude-frequency dependence for QCM. We demonstrated that these distortions are connected to the rupture of macromolecules from the QCM surface. It is shown that the identification of the rupture of particles and macromolecules from the QCM surface can be carried out by relying on the analysis of these distortions of the amplitude-frequency dependence.
View Article and Find Full Text PDF