Publications by authors named "Ivan A Kuznetsov"

The genetic structure in Europe was mostly shaped by admixture between the Western Hunter-Gatherers, Early European Farmers and Steppe Bronze Age ancestral components. Such structure is regarded as a confounder in GWAS and follow-up studies, and gold-standard methods exist to correct for it. However, it is still poorly understood to which extent these ancestral components contribute to complex trait variation in present-day Europe.

View Article and Find Full Text PDF

Inhibitors of sodium glucose cotransporter-2 (SGLT2i) demonstrate strong symptomatic and mortality benefits in the treatment of heart failure but appear to do so independently of SGLT2. The relevant pharmacologic target of SGLT2i remains unclear. We show here that SGLT2i directly activate pantothenate kinase 1 (PANK1), the rate-limiting enzyme that initiates the conversion of pantothenate (vitamin B5) to coenzyme-A (CoA), an obligate co-factor for all major pathways of fuel use in the heart.

View Article and Find Full Text PDF

Introduction: A feared complication of an acute myocardial infarction (AMI) is cardiac arrest (CA). Even if return of spontaneous circulation is achieved, cardiogenic shock (CS) is common. Venoarterial extracorporeal membrane oxygenation (VA-ECMO) supports patients with CS and is often used in conjunction with an Impella device (2.

View Article and Find Full Text PDF

We report a new facile method for the synthesis of prolate cobalt ferrite nanoparticles without additional stabilizers, which involves a co-precipitation reaction of Fe and Co ions in a static magnetic field. The magnetic field is demonstrated to be a key factor for the 1D growth of cobalt ferrite nanocrystals in the synthesis. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy are applied to characterize the morphology and structure of the obtained nanoparticles.

View Article and Find Full Text PDF

Recent publications report that although the mitochondria population in an axon can be quickly replaced by a combination of retrograde and anterograde axonal transport (often within less than 24 hours), the axon contains much older mitochondria. This suggests that not all mitochondria that reach the soma are degraded and that some are recirculating back into the axon. To explain this, we developed a model that simulates mitochondria distribution when a portion of mitochondria that return to the soma are redirected back to the axon rather than being destroyed in somatic lysosomes.

View Article and Find Full Text PDF

Mitochondrial aging has been proposed to be involved in a variety of neurodegenerative disorders, such as Parkinson's disease. Here, we explore the impact of multiple branching junctions in axons on the mean age of mitochondria and their age density distributions in demand sites. The study examined mitochondrial concentration, mean age, and age density distribution in relation to the distance from the soma.

View Article and Find Full Text PDF

Chronic back pain (CBP) is a complex heritable trait and a major cause of disability worldwide. We developed and validated a genome-wide polygenic risk score (PRS) for CBP using a large-scale GWAS based on UK Biobank participants of European ancestry (N = 265,000). The PRS showed poor overall predictive ability (AUC = 0.

View Article and Find Full Text PDF

Background Context: Chronic back pain (CBP) is a common debilitating condition with substantial societal impact. While understanding genotype-by-environment (GxE) interactions may be crucial to achieving the goals of personalized medicine, there are few large-scale studies investigating this topic for CBP. None of them systematically explore multiple CBP risk factors.

View Article and Find Full Text PDF
Article Synopsis
  • Slow axonal transport (SAT) moves proteins, including tau, from the cell body to the axon terminal, primarily relying on active transport via molecular motors.
  • Despite its main anterograde direction, SAT has a retrograde component, raising questions about its necessity.
  • A study shows that without retrograde transport, tau concentration along the axon remains uniform, which does not match experimental observations, indicating that retrograde transport is essential for proper tau distribution.
View Article and Find Full Text PDF

Previous work on mitochondrial distribution in axons has shown that approximately half of the presynaptic release sites do not contain mitochondria, raising the question of how the boutons that do not contain mitochondria are supplied with ATP. Here, we develop and apply a mathematical model to study this question. Specifically, we investigate whether diffusive transport of ATP is sufficient to support the exocytic functionality in synaptic boutons which lack mitochondria.

View Article and Find Full Text PDF

We explore the impact of multiple branching junctions in axons on the mean age of mitochondria and their age density distributions in demand sites. The study looked at mitochondrial concentration, mean age, and age density distribution in relation to the distance from the soma. We developed models for a symmetric axon containing 14 demand sites and an asymmetric axon containing 10 demand sites.

View Article and Find Full Text PDF

Here, we report computational studies of bidirectional transport in an axon, specifically focusing on predictions when the retrograde motor becomes dysfunctional. We are motivated by reports that mutations in dynein-encoding genes can cause diseases associated with peripheral motor and sensory neurons, such as type 2O Charcot-Marie-Tooth disease. We use two different models to simulate bidirectional transport in an axon: an anterograde-retrograde model, which neglects passive transport by diffusion in the cytosol, and a full slow transport model, which includes passive transport by diffusion in the cytosol.

View Article and Find Full Text PDF

We describe a compartmental model of mitochondrial transport in axons, which we apply to compute mitochondrial age at different distances from the soma. The model predicts that at the tip of an axon that has a length of 1 cm, the average mitochondrial age is approximately 22 h. The mitochondria are youngest closest to the soma and their age scales approximately linearly with distance from the soma.

View Article and Find Full Text PDF

We report a computational study of mitochondria transport in a branched axon with two branches of different sizes. For comparison, we also investigate mitochondria transport in an axon with symmetric branches and in a straight (unbranched) axon. The interest in understanding mitochondria transport in branched axons is motivated by the large size of arbors of dopaminergic neurons, which die in Parkinson's disease.

View Article and Find Full Text PDF

We describe a modular computational framework for analyzing cell-wide spatiotemporal signaling dynamics in single-cell microscopy experiments that accounts for the experiment-specific geometric and diffractive complexities that arise from heterogeneous cell morphologies and optical instrumentation. Inputs are unique cell geometries and protein concentrations derived from confocal stacks and spatiotemporally varying environmental stimuli. After simulating the system with a model of choice, the output is convolved with the microscope point-spread function for direct comparison with the observable image.

View Article and Find Full Text PDF
Article Synopsis
  • The paper introduces a groundbreaking minimal model for simulating the growth of Lewy bodies (LB), a significant factor in neurodegenerative diseases.
  • The Lewy body structure is characterized by a central core made of membrane fragments and dysfunctional organelles, surrounded by a halo of alpha-synuclein fibrils, with growth driven by a specific mathematical model.
  • The study provides analytical solutions for the core and halo growth, as well as a sensitivity analysis to assess the impact of various model parameters.
View Article and Find Full Text PDF

Even though most axonal cargos are synthesized in the soma, the concentration of many of these cargos is larger at the presynaptic terminal than in the soma. This requires transport of these cargos from the soma to the presynaptic terminal or other active sites in the axon. Axons utilize both bidirectional (for example, slow axonal transport) and unidirectional (for example, fast anterograde axonal transport) modes of cargo transport.

View Article and Find Full Text PDF

We present ANANASTRA, https://ananastra.autosome.org, a web server for the identification and annotation of regulatory single-nucleotide polymorphisms (SNPs) with allele-specific binding events.

View Article and Find Full Text PDF

We describe the efficient creation of single-component optogenetic tools for membrane recruitment-based signaling perturbation using BcLOV4 technology. The workflow requires two plasmids to create six different domain arrangements of the dynamic membrane binder BcLOV4, a fluorescent reporter, and the fused signaling protein of interest. Screening of this limited set of genetic constructs for expression characteristics and dynamic translocation in response to one pulse of light is sufficient to identify viable signaling control tools.

View Article and Find Full Text PDF

We describe single-component optogenetic probes whose activation dynamics depend on both light and temperature. We used the BcLOV4 photoreceptor to stimulate Ras and phosphatidyl inositol-3-kinase signaling in mammalian cells, allowing activation over a large dynamic range with low basal levels. Surprisingly, we found that BcLOV4 membrane translocation dynamics could be tuned by both light and temperature such that membrane localization spontaneously decayed at elevated temperatures despite constant illumination.

View Article and Find Full Text PDF

Finding the causative pathophysiological mechanisms for Parkinson's disease (PD) is important for developing therapeutic interventions. Until recently, it was believed that Lewy bodies (LBs), the hallmark of PD, are mostly composed of alpha-synuclein (α-syn) fibrils. Recent results (Shahmoradian et al.

View Article and Find Full Text PDF

Recent experimental observations have shown evidence of an unexpected sudden drop-off in the dense core vesicles (DCVs) content at the ends of certain types of axon endings. This article seeks to determine whether these observations may be explained without modifying the parameters characterizing the ability of distal en passant boutons to capture and accumulate DCVs. We developed a mathematical model that is based on the conservation of captured and transiting DCVs in boutons.

View Article and Find Full Text PDF

Optogenetic tools are created to control RhoA GTPase, a central regulator of actin organization and actomyosin contractility. RhoA GTPase, or its upstream activator ARHGEF11, is fused to BcLOV4, a photoreceptor that can be dynamically recruited to the plasma membrane by a light-regulated protein-lipid electrostatic interaction with the inner leaflet. Direct membrane recruitment of these proteins induces potent contractile signaling sufficient to separate adherens junctions with as little as one pulse of blue light.

View Article and Find Full Text PDF
Article Synopsis
  • Adult height has been a key focus in studies of heritability and helped develop the classical polygenic model for understanding complex traits.
  • The traditional model assumes that effects are additive and residuals are normally distributed, but this may not hold true in larger studies involving many individuals.
  • Findings suggest that for large-scale analyses, incorporating non-additive interactions among sex, environment, and genes is essential, or alternatively, using a log-normal approximation can maintain the robustness of the additive model.
View Article and Find Full Text PDF