The production of functionally active membrane proteins (MPs) in an adequate membrane environment is a key step in structural biology. Polymer-lipid particles based on styrene and maleic acid (SMA) represent a promising type of membrane mimic, as they can extract properly folded MPs directly from their native lipid environment. However, the original SMA polymer is sensitive to acidic pH levels, which has led to the development of several modifications: SMA-EA, SMA-QA, and others.
View Article and Find Full Text PDFFungi and plants are not only capable of synthesizing the entire spectrum of lipids de novo but also possess a well-developed system that allows them to assimilate exogenous lipids. However, the role of structure in the ability of lipids to be absorbed and metabolized has not yet been characterized in detail. In the present work, targeted lipidomics of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs), in parallel with morphological phenotyping, allowed for the identification of differences in the effects of PC molecular species introduced into the growth medium, in particular, typical bacterial saturated (14:0/14:0, 16:0/16:0), monounsaturated (16:0/18:1), and typical for fungi and plants polyunsaturated (16:0/18:2, 18:2/18:2) species, on .
View Article and Find Full Text PDFHerein, we describe the synthesis of pH-sensitive lipophilic colchicine prodrugs for liposomal bilayer inclusion, as well as preparation and characterization of presumably stealth PEGylated liposomes with above-mentioned prodrugs. These formulations liberate strongly cytotoxic colchicinoid derivatives selectively under slightly acidic tumor-associated conditions, ensuring tumor-targeted delivery of the compounds. The design of the prodrugs is addressed to pH-triggered release of active compounds in the slight acidic media, that corresponds to tumor microenvironment, while keeping sufficient stability of the whole formulation at physiological pH.
View Article and Find Full Text PDFMembranes (Basel)
June 2023
The secreted phospholipases A2 (sPLA2s) play important roles both physiologically and pathologically, with their expression increasing significantly in diseases such as sepsis, inflammation, different cancers, glaucoma, obesity, Alzheimer's disease and even COVID-19. The fact has led to a large-scale search for inhibitors of these enzymes. In total, several dozen promising molecules have been proposed, but not a single one has successfully passed clinical trials.
View Article and Find Full Text PDFPreviously, we showed in the human umbilical vein endothelial cells (HUVECs) model that a liposome formulation of melphalan lipophilic prodrug (MlphDG) decorated with selectin ligand tetrasaccharide Sialyl Lewis X (SiaLe) undergoes specific uptake by activated cells and in an in vivo tumor model causes a severe antivascular effect. Here, we cultured HUVECs in a microfluidic chip and then applied the liposome formulations to study their interactions with the cells in situ under hydrodynamic conditions close to capillary blood flow using confocal fluorescent microscopy. The incorporation of 5 to 10% SiaLe conjugate in the bilayer of MlphDG liposomes increased their consumption exclusively by activated endotheliocytes.
View Article and Find Full Text PDFIn aqueous solutions, cobra cytotoxins (CTX), three-finger folded proteins, exhibit conformational equilibrium between conformers with either cis or trans peptide bonds in the N-terminal loop (loop-I). The equilibrium is shifted to the cis form in toxins with a pair of adjacent Pro residues in this loop. It is known that CTX with a single Pro residue in loop-I and a cis peptide bond do not interact with lipid membranes.
View Article and Find Full Text PDFWe describe azophenylindane based molecular motors (aphin-switches) which have two different rotamers of -configuration and four different rotamers of -configuration. The behaviors of these motors were investigated both experimentally and computationally. The conversion of aphin-switch does not yield single isomer but a mixture of these.
View Article and Find Full Text PDFTo assess the stability and efficiency of liposomes carrying a phospholipase A2-sensitive phospholipid-allocolchicinoid conjugate (aC-PC) in the bilayer, egg phosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylglycerol-based formulations were tested in plasma protein binding, tubulin polymerization inhibition, and cytotoxicity assays. Liposomes L-aC-PC10 containing 10 mol. % aC-PC in the bilayer bound less plasma proteins and were more stable in 50% plasma within 4 h incubation, according to calcein release and FRET-based assays.
View Article and Find Full Text PDFPhoto-controlled or photo-regulated molecules, especially biologically active and operating in physiological conditions, are in steady demand. Herein, furocoumaric and furocoumarinic acids being ()-isomers relative to each other were obtained in two stages starting from psoralen: the alkaline solvolysis of psoralen led to furocoumaric acid, which was further → photoisomerized (365 nm) to furocoumarinic acid. The kinetics of → photoisomerization was monitored by HPLC and UV-vis spectrophotometry.
View Article and Find Full Text PDFPhospholipase A2 (PLA2) exerts a wide range of biological effects and attracts a lot of attention of researchers. Two sites are involved in manifestation of PLA2 enzymatic activity: catalytic site responsible for substrate binding and fatty acid cleavage from the sn-2 position of a glycerophospholipid, and interface binding site (IBS) responsible for the protein binding to lipid membrane. IBS is formed by positively charged and hydrophobic amino acids on the outer surface of the protein molecule.
View Article and Find Full Text PDFArchaeal lipids ensure unprecedented stability of archaea membranes in extreme environments. Here, we incorporate a characteristic structural feature of an archaeal lipid, the cyclopentane ring, into hydrocarbon chains of a short-chain (C12) phosphatidylcholine to explore whether the insertion would allow such a lipid (1,2-di-(3-(3-hexylcyclopentyl)-propanoate)-sn-glycero-3-phosphatidylcholine, diC12cp-PC) to form stable bilayers at room temperature. According to fluorescence-based assays, in water diC12cp-PC formed liquid-crystalline bilayers at room temperature.
View Article and Find Full Text PDFIn vitro assessment of lipid intermembrane transfer activity by cellular proteins typically involves measurement of either radiolabeled or fluorescently labeled lipid trafficking between vesicle model membranes. Use of bilayer vesicles in lipid transfer assays usually comes with inherent challenges because of complexities associated with the preparation of vesicles and their rather short "shelf life". Such issues necessitate the laborious task of fresh vesicle preparation to achieve lipid transfer assays of high quality, precision, and reproducibility.
View Article and Find Full Text PDFArchaea are prokaryotic microorganisms famous for their ability to adapt to extreme environments, including low and high temperatures. Archaeal lipids often are macrocycles with two polar heads and a hydrophobic core that contains methyl groups and in-line cycles. Here we present the design of novel general-purpose surfactants that have inherited features of archaeal lipids.
View Article and Find Full Text PDFEnzyme-responsive liposomes release their cargo in response to pathologically increased levels of enzymes at the target site. We report herein an assembly of phospholipase A2-responsive liposomes based on colchicinoid lipid prodrugs incorporated into lipid bilayer of the nanosized vesicles. The liposomes were constructed to addresses two important issues: (i) the lipid prodrugs were designed to fit the structure of the enzyme binding site; and (ii) the concept of lateral pressure profile was used to design lipid prodrugs that introduce almost no distortions into the lipid bilayer packing, thus ensuring that corresponding liposomes are stable.
View Article and Find Full Text PDFThe glycolipid transfer protein (GLTP) fold defines a superfamily of eukaryotic proteins that selectively transport sphingolipids (SLs) between membranes. However, the mechanisms determining the protein selectivity for specific glycosphingolipids (GSLs) are unclear. Here, we report the crystal structure of the GLTP homology (GLTPH) domain of human 4-phosphate adaptor protein 2 (FAPP2) bound with -oleoyl-galactosylceramide.
View Article and Find Full Text PDFIn a previous study, a formulation of methotrexate (MTX) incorporated in the lipid bilayer of 100-nm liposomes in the form of diglyceride ester (MTX-DG, lipophilic prodrug) was developed. In this study, first, the interactions of MTX-DG liposomes with various human and mouse tumor cell lines were studied using fluorescence techniques. The liposomes composed of egg phosphatidylcholine (PC)/yeast phosphatidylinositol/MTX-DG, 8:1:1 by mol, were labeled with fluorescent analogs of PC and MTX-DG.
View Article and Find Full Text PDFThe lentil lipid transfer protein, designated as Lc-LTP2, was isolated from Lens culinaris seeds. The protein belongs to the LTP1 subfamily and consists of 93 amino acid residues. Its spatial structure includes four α-helices (H1-H4) and a long C-terminal tail.
View Article and Find Full Text PDFArchaeal plasma membranes appear to be extremely durable and almost impermeable to water and ions, in contrast to the membranes of Bacteria and Eucaryota. Additionally, they remain liquid within a temperature range of 0-100°C. These are the properties that have most likely determined the evolutionary fate of Archaea, and it may be possible for bionanotechnology to adopt these from nature.
View Article and Find Full Text PDFGangliosides located at the outer leaflet of plasma membrane are molecules that either participate in recognizing of exogenous ligand molecules or exhibit their own receptor activity, which are both essential phenomena for cell communication and signaling as well as for virus and toxin entry. Regulatory mechanisms of lipid-mediated recognition are primarily subjected to the physical status of the membrane in close vicinity of the receptor. Concerning the multivalent receptor activity of the ganglioside GM1, several regulatory strategies dealing with GM1 clustering and cholesterol involvement have been proposed.
View Article and Find Full Text PDFPhosphatidycholines (PC) with two saturated acyl chains (e.g., dipalmitoyl) mimic natural sphingomyelin (SM) by promoting raft formation in model membranes.
View Article and Find Full Text PDFUnlabelled: Earlier we showed that liposome formulation of DL-melphalan lipophilic prodrug bearing tetrasaccharide Sialyl Lewis X (SiaLe) caused prolonged therapeutic effect on mammary cancer in mice. Here, we compare antivascular effect of SiaLe-liposomes loaded with diglyceride ester of melphalan (Mlph) against SiaLe-free formulation in Lewis lung carcinoma model.
Methods: Liposomes of egg phosphatidylcholine/yeast phosphatidylinositol/1,2-dioleoyl glycerol (DOG) conjugate of Mlph/±SiaLe-PEG-DOG, 8:1:1:0.
Cationic liposomes are promising candidates for the delivery of various therapeutic nucleic acids. Here, we report a convenient synthesis of carbamate-type cationic lipids with various hydrophobic domains (tetradecanol, dialkylglycerol, cholesterol) and positively charged head-groups (pyridinium, N-methylimidazolium, N-methylmorpholinium) and data on the structure-transfection activity relationships. It was found that single-chain lipids possess high surface activity, which correlates with high cytotoxicity due to their ability to disrupt the cellular membrane by combined hydrophobic and electrostatic interactions.
View Article and Find Full Text PDFAmong amphitropic proteins, human glycolipid transfer protein (GLTP) forms a structurally-unique fold that translocates on/off membranes to specifically transfer glycolipids. Phosphatidylcholine (PC) bilayers with curvature-induced packing stress stimulate much faster glycolipid intervesicular transfer than nonstressed PC bilayers raising questions about planar cytosol-facing biomembranes being viable sites for GLTP interaction. Herein, GLTP-mediated desorption kinetics of fluorescent glycolipid (tetramethyl-boron dipyrromethene (BODIPY)-label) from lipid monolayers are assessed using a novel microfluidics-based surface balance that monitors lipid lateral packing while simultaneously acquiring surface fluorescence data.
View Article and Find Full Text PDF