Publications by authors named "Ivalina Avramova"

The current study comprehensively investigates the adsorption behavior of chromium (Cr(III)) in wastewater using Algerian kaolinite clay. The structural and textural properties of the kaolinite clay are extensively characterized through a range of analytical methods, including XRD, FTIR, SEM-EDS, XPS, laser granulometry, N adsorption isotherm, and TGA-DTA. The point of zero charge and zeta potential are also assessed.

View Article and Find Full Text PDF

In this work, a novel approach is suggested to grow bilayer fibers by combining electrospinning and atomic layer deposition (ALD). Polyvinyl alcohol (PVA) fibers are obtained by electrospinning and subsequently covered with thin AlO deposited at a low temperature by ALD. To burn the PVA core, the fibrous structures are subjected to high-temperature annealing.

View Article and Find Full Text PDF

Different nano-sized phases were synthesized using chemical vapor deposition (CVD) processes. The deposition took place on {001} Si substrates at about 1150-1160 °C. The carbon source was thermally decomposed acetone (CH)CO in a main gas flow of argon.

View Article and Find Full Text PDF

The magneto-optical (MO) Kerr effects for ZnO and ZnO:Ni-doped nanolaminate structures prepared using atomic layer deposition (ALD) have been investigated. The chemical composition and corresponding structural and morphological properties were studied using XRD and XPS and compared for both nanostructures. The 2D array gradient maps of microscale variations of the Kerr angle polarization rotation were acquired by means of MO Kerr microscopy.

View Article and Find Full Text PDF

The deposition of low-adhesive siloxane coatings is a current trend for the non-toxic control of bacterial growth and biofilm formation. Total elimination of biofilm formation has not been reported so far. The aim of this investigation was to study the ability of a non-toxic, natural, biologically active substance, such as fucoidan, to inhibit bacterial growth on similar medical coatings.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines the effects of postdeposition treatments (UV-ozone and thermal annealing) on aluminum-doped zinc oxide (ZnO:Al) thin films grown by atomic layer deposition.
  • - X-ray diffraction analysis indicates that the films exhibit a polycrystalline wurtzite structure with an increase in crystal size after thermal annealing, while UV-ozone treatment does not significantly alter crystallinity.
  • - Postdeposition treatments influence the electrical and optical properties of ZnO:Al, with UV-ozone exposure increasing oxygen vacancies and effectively reducing sheet resistance without altering the films' basic structure or morphology.
View Article and Find Full Text PDF

The chemical interactions of two types of graphite and two types of carbon black (CB) with acetone, toluene, and phenol were studied in order to evaluate the influence of chemical treatment on the structure and morphology of the carbon phases. The experimental treatment of carbon phases was carried out at room temperature for 1 hour. The chemical and phase composition were studied by x-ray photoelectron (XP) and Raman spectroscopies, while the morphology and structure were determined by powder x-ray diffraction, as well as transmission electron microscopy techniques.

View Article and Find Full Text PDF

ZnO doped with transition metals (Co, Fe, or Ni) that have non-compensated electron spins attracts particular interest as it can induce various magnetic phenomena and behaviors. The advanced atomic layer deposition (ALD) technique makes it possible to obtain very thin layers of doped ZnO with controllable thicknesses and compositions that are compatible with the main microelectronic technologies, which further boosts the interest. The present study provides an extended analysis of the magneto-optical MO Kerr effect and the dielectric properties of (Co, Fe, or Ni)-doped ZnO films prepared by ALD.

View Article and Find Full Text PDF

The present study investigates the possibility of obtaining graphene-like phases (defected graphene, graphene oxide, and reduced graphene oxide) as fine suspensions by applying a novel pulsed laser ablation (PLA) approach in flow mode. Two types of suspensions of microcrystalline graphite in aqueous suspensions and two types of microcrystalline graphite in suspensions of 6% hydrogen peroxide solution were irradiated in a quartz tube through which they flow. The third (λ = 355 nm) and fourth harmonics (λ = 266 nm) of an Nd:YAG laser system (15 ns pulse duration and 10 Hz pulse repetition rate) were used.

View Article and Find Full Text PDF

Graphene films were grown by chemical vapor deposition on Cu foil. The obtained samples were characterized by Raman spectroscopy, ellipsometry, X-ray photoelectron spectroscopy and electron back-scatter diffraction. We discuss the time-dependent changes in the samples, estimate the thickness of emerging CuO beneath the graphene and check the orientation-dependent affinity to oxidation of distinct Cu grains, which also governs the manner in which the initial strong Cu-graphene coupling and strain in the graphene lattice is released.

View Article and Find Full Text PDF