A method is described enabling to eliminate the spectral interference from alumina matrix onto As determination at the wavelength 189 nm by electrothermal atomic absorption spectrometry with deuterium background correction. Matrix modification was performed by the addition of ammonium fluoride to protect the formation of aluminium oxide implicated in causing spectral interference and to increase volatility of alumina matrix via the formation of AlF(3). Pre-treating of the pyrolytic graphite platform with a solution of rhodium and citric acid has enabled to stabilize the analyte up to temperature of 1300 degrees C at which most of AlF(3) could be removed from the graphite furnace.
View Article and Find Full Text PDFWhen tin is to be determined in such a complex matrix like aqua regia extracts of environmental samples by electrothermal atomic absorption spectrometry (ETAAS), spectral interferences occur when deuterium-lamp (D(2)) background correction is used, even using high pyrolysis temperature of 1400 degrees C achieved with palladium with citric acid chemical modifier. We have found that the further addition of NH(4)F to palladium with citric acid chemical modifier is essential for overcoming the above-mentioned problems for which aluminium oxide is most probably responsible. It is supposed, that NH(4)F enables volatilization of the alumina matrix formed by hydrolysis from the chloride salt and interfering in a gas phase via the formation of AlF(3) which could be, in contrast to aluminium oxide, removed from the graphite furnace during the pyrolysis stage.
View Article and Find Full Text PDF