Enabling self-healing of materials is crucially important for saving resources and energy in numerous emerging applications. While strategies for the self-healing of polymers are advanced, mechanisms for semiconducting inorganic materials are scarce due to the lack of suitable healing agents. Here a concept for the self-healing of metal oxides is developed.
View Article and Find Full Text PDFHere, we report on a simultaneous growth and radical-initiated cross-linking of a hybrid thin film in a layer-by-layer manner via molecular layer deposition (MLD). The cross-linked film exhibited a self-limiting MLD growth behavior and improved properties like 12% higher film density and enhanced stability compared to the non-cross-linked film.
View Article and Find Full Text PDFIn this work, omniphobic surfaces are developed by combining chemical etching and surface modification of aluminum. In the first step, hierarchical micro/nanostructuring is carried out by chemical etching. Thereafter, a perfluoropolyether is grafted onto the corrugated aluminum substrate, decreasing its surface free energy and turning the system omniphobic.
View Article and Find Full Text PDFIn this work, we report the first ring opening vapor to solid polymerization of cyclotrisiloxane and N-methyl-aza-2,2,4-trimethylsilacyclopentane by molecular layer deposition (MLD). This process was studied in situ with a quartz crystal microbalance and the thin film was characterized by X-ray photoelectron spectroscopy, ATR-FTIR and high-resolution transmission electron microscopy.
View Article and Find Full Text PDFThis study describes a straightforward preparation of hybrid organic-inorganic thin films containing a stable 'sandwich'-like structure of two atomic layer deposited (ALD) ZnO layers separated by a thin organosilane phase, which is built from a single organic component (3-mercaptopropyl)trimethoxysilane (MPTMS). Grafting of MPTMS on the first ALD ZnO layer was performed in solution and driven by the strong affinity of the terminal thiol functionality (-SH) towards ZnO. We demonstrate that under different reaction conditions, either MPTMS monolayers are prepared or a 5 nm thick cross-linked polymeric network is formed due to the self-condensation of silane, which covers the ALD ZnO surface.
View Article and Find Full Text PDFThe preparation of non-oxidized Ge quantum dot (QD) lattices embedded in AlO, SiN, SiC matrices by self-assembled growth was studied. The materials were produced by magnetron sputtering deposition, using different substrate temperatures. The deposition regimes leading to the self-assembled growth type and the formation of three-dimensionally ordered Ge QD lattices in different matrices were investigated and determined.
View Article and Find Full Text PDFWe report for the first time on a pulsed vapor phase copper-free azide-alkyne click reaction on ZnO by using the atomic layer deposition (ALD) process technology. This reproducible and fast method is based on an in situ two-step reaction consisting of sequential exposures of ZnO to propiolic acid and benzyl azide.
View Article and Find Full Text PDFTantalum nitride nanoparticles (NPs) and cubic bixbyite-type TaN nanocrystals (NCs) were grown in (Ta-N+AlO)/AlO periodic multilayers (MLs) after thermal treatment. The MLs were prepared by magnetron deposition at room temperature and characterized using grazing incidence small-angle X-ray scattering (GISAXS), X-ray reflectivity (XRR), grazing incidence X-ray diffraction (GIXRD), secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS). We found amorphous tantalum nitride NPs at 600-800 °C, with a high degree of ordering along the surface normal and short-range ordering within the layers containing tantalum (metallic layers).
View Article and Find Full Text PDFElectron paramagnetic resonance (EPR) signals induced by γ-radiation in different polymorphic forms of trehalose were studied with dosimetry applications in view. Dose response of trehalose in terms of the concentration of induced paramagnetic centers was studied in the dose range from 0.5 to 50 kGy.
View Article and Find Full Text PDF