Brain-derived neurotrophic factor (BDNF) signaling through the tropomyosin-related kinase B (TrkB) receptor promotes neuronal growth and survival following an injury. However, its short half-life and pleiotropic effects limit the clinical use of BDNF as a therapy in neurodegenerative disorders. Identification of novel and selective TrkB activators may ameliorate the damage caused to retinal neurons during eye-related injuries, and may reduce adverse visual outcomes associated with visual trauma.
View Article and Find Full Text PDFThe world-wide prevalence of myopia (nearsightedness) is increasing, but its pathogenesis is incompletely understood. Among many putative mechanisms, laboratory and clinical findings have implicated circadian biology in the etiology of myopia. Consistent with a circadian hypothesis, we recently reported a marked variability in diurnal patterns of gene expression in two crucial tissues controlling post-natal refractive development - the retina and choroid-at the onset of form-deprivation myopia in chick, a widely studied and validated model.
View Article and Find Full Text PDFPurpose: Interphotoreceptor retinoid-binding protein's (IRBP) role in eye growth and its involvement in cell homeostasis remain poorly understood. One hypothesis proposes early conditional deletion of the IRBP gene could lead to a myopic response with retinal degeneration, whereas late conditional deletion (after eye size is determined) could cause retinal degeneration without myopia. Here, we sought to understand if prior myopia was required for subsequent retinal degeneration in the absence of IRBP.
View Article and Find Full Text PDFThe prevalence of myopia (nearsightedness) is increasing to alarming levels, but its etiology remains poorly understood. Because both laboratory and clinical findings suggest an etiologic role for circadian rhythms in myopia development, we assayed gene expression by RNA-Seq in retina and choroid at the onset of unilateral experimental myopia in chick, isolating tissues every 4 h during a single 24-h period from myopic and contralateral control eyes. Occluded versus open eye gene expression differences varied considerably over the 24-h sampling period, with some occurring at multiple times of day but with others showing differences at only a single investigated timepoint.
View Article and Find Full Text PDFPurpose: Limited research exists on the time course of long-term retinal and cerebral deficits in diabetic rodents. Previously, we examined short term (4-8 weeks) deficits in the Goto-Kakizaki (GK) rat model of Type II diabetes. Here, we investigated the long-term (1-8 months) temporal appearance of functional deficits (retinal, cognitive, and motor), retinal vascular pathology, and retinal dopamine levels in the GK rat.
View Article and Find Full Text PDFPurpose: The purpose of this study was to investigate the role of Lysine specific demethylase 1 () in murine retinal development. LSD1 is a histone demethylase that can demethylate mono- and di-methyl groups on H3K4 and H3K9. Using Chx10-Cre and Rho-iCre75 driver lines, we generated novel transgenic mouse lines to delete in most retinal progenitor cells or specifically in rod photoreceptors.
View Article and Find Full Text PDFThe diurnal peak of phagocytosis by the retinal pigment epithelium (RPE) of photoreceptor outer segments (POS) is under circadian control and believed that this process involves interactions from the retina and RPE. Previous studies have demonstrated that a functional circadian clock exists within multiple retinal cell types and RPE. Thereby, the aim of this study was to determine whether the clock in the retina or RPE controls the diurnal phagocytic peak and whether disruption of the circadian clock in the RPE would affect cellular function and the viability during aging.
View Article and Find Full Text PDFThe visual system uses ON and OFF pathways to signal luminance increments and decrements. Increasing evidence suggests that ON and OFF pathways have different signaling properties and serve specialized visual functions. However, it is still unclear the contribution of ON and OFF pathways to visual behavior.
View Article and Find Full Text PDFMyopia, or nearsightedness, is the most common form of refractive abnormality and is characterized by excessive ocular elongation in relation to ocular power. Retinal neurotransmitter signaling, including dopamine, is implicated in myopic ocular growth, but the visual pathways that initiate and sustain myopia remain unclear. Melanopsin-expressing retinal ganglion cells (mRGCs), which detect light, are important for visual function, and have connections with retinal dopamine cells.
View Article and Find Full Text PDFPressure waves from explosions or other traumatic events can damage the neurons of the eye and visual centers of the brain, leading to functional loss of vision. There are currently few treatments for such injuries that can be deployed rapidly to mitigate damage. Brain-derived neurotrophic factor (BDNF) and activation of its receptor tropomycin-related kinase B (TrkB) have neuroprotective effects in a number of degeneration models.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2021
Purpose: Exposure to high-intensity or outdoor lighting has been shown to decrease the severity of myopia in both human epidemiological studies and animal models. Currently, it is not fully understood how light interacts with visual signaling to impact myopia. Previous work performed in the mouse retina has demonstrated that functional rod photoreceptors are needed to develop experimentally-induced myopia, alluding to an essential role for rod signaling in refractive development.
View Article and Find Full Text PDFThe Per2 mouse model developed by Takahashi laboratory is one of the most powerful models to study circadian rhythms in real time. In this study, we report that photoreceptors degenerate in male Per2 mice during aging. Young (2.
View Article and Find Full Text PDFIn chicks, the diurnal patterns of retinal dopamine synthesis and release are associated with refractive development. To assess the within-day patterns of dopamine release, we assayed vitreal levels of DOPAC (3,4-dihydroxyphenylacetic acid) using high performance liquid chromatography with electrochemical detection, at 4-h intervals over 24 h in eyes with experimental manipulations that change ocular growth rates. Chicks were reared under a 12 h light/12 h dark cycle; experiments began at 12 days of age.
View Article and Find Full Text PDFPurpose: The present study tested the hypothesis that connexin-36 (Cx36) and gap junctions between photoreceptor cells contribute to the circadian rhythm of the photopic electroretinogram (ERG) b-wave amplitude.
Methods: Cone-specific disruption of Cx36 was obtained in mice with a floxed Gjd2 gene and human red/green pigment promoter (HRGP)-driven Cre recombinase. Standard ERG, spectral-domain optical coherence tomography (SD-OCT) and histochemical methods were used.
Purpose: Stimulated by evidence implicating diurnal/circadian rhythms and light in refractive development, we studied the expression over 24 hours of selected clock and circadian rhythm-related genes in retina/retinal pigment epithelium (RPE) and choroid of experimental ametropias in chicks.
Methods: Newly hatched chicks, entrained to a 12-hour light/dark cycle for 12 to 14 days, either experienced nonrestricted vision OU (i.e.
Purpose: A burst in phagocytosis of spent photoreceptor outer fragments by RPE is a rhythmic process occurring 1 to 2 hours after the onset of light. This phenomenon is considered crucial for the health of the photoreceptors and RPE. We have recently reported that dopamine, via dopamine 2 receptor (D2R), shifts the circadian rhythm in the RPE.
View Article and Find Full Text PDFAnimal studies suggest that the retinal dysfunction in diabetic subjects that precedes overt clinical vasculopathy may be due to a retinal dopamine deficit. We analyzed levels of dopamine (DA) and its primary metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), in the vitreous of diabetic and non-diabetic human subjects. Adult patients undergoing pars plana vitrectomy for non-hemorrhagic indications were prospectively recruited from the Emory Eye Center in Atlanta, GA.
View Article and Find Full Text PDFDiabetic retinopathy (DR) is diagnosed clinically by directly viewing retinal vascular changes during ophthalmoscopy or through fundus photographs. However, electroretinography (ERG) studies in humans and rodents have revealed that retinal dysfunction is demonstrable prior to the development of visible vascular defects. Specifically, delays in dark-adapted ERG oscillatory potential (OP) implicit times in response to dim-flash stimuli (<-1.
View Article and Find Full Text PDFExperimental evidence suggests that dopamine (DA) modulates refractive eye growth. We evaluated whether increasing endogenous DA activity using pharmacological or genetic approaches decreased myopia susceptibility in mice. First, we assessed the effects of systemic L-3,4-dihydroxyphenylalanine (L-DOPA) injections on form deprivation myopia (FDM) in C57BL/6 J (WT) mice.
View Article and Find Full Text PDFThe pathophysiology of refractive errors is poorly understood. Myopia (nearsightedness) in particular both blurs vision and predisposes the eye to many blinding diseases during adulthood. Based on past findings of diurnal variations in the dimensions of the eyes of humans and other vertebrates, altered diurnal rhythms of these ocular dimensions with experimentally induced myopia, and evolving evidence that ambient light exposures influence refractive development, we assessed whether disturbances in circadian signals might alter the refractive development of the eye.
View Article and Find Full Text PDFDuring mouse postnatal eye development, the embryonic hyaloid vascular network regresses from the vitreous as an adaption for high-acuity vision. This process occurs with precisely controlled timing. Here, we show that opsin 5 (OPN5; also known as neuropsin)-dependent retinal light responses regulate vascular development in the postnatal eye.
View Article and Find Full Text PDFRetinal photoreceptors are important in visual signaling for normal eye growth in animals. We used Gnat2 (Gnat2) mice, a genetic mouse model of cone dysfunction to investigate the influence of cone signaling in ocular refractive development and myopia susceptibility in mice. Refractive development under normal visual conditions was measured for Gnat2 and age-matched Gnat2 mice, every 2 weeks from 4 to 14 weeks of age.
View Article and Find Full Text PDFThe mammalian retina contains an autonomous circadian clock system that controls many physiological functions within this tissue. Previous studies on young mice have reported that removal of the key circadian clock gene from the retina affects the circadian regulation of visual function, but does not affect photoreceptor viability. Because dysfunction in the circadian system is known to affect cell viability during aging in other systems, we compared the effect of removal from the retina on visual function, inner retinal structure, and photoreceptor viability in young (1 to 3 months) and aged (24 to 26 months) mice.
View Article and Find Full Text PDFMany types of retinal neuron modulate the distribution of their processes to ensure a uniform coverage of the retinal surface. Dendritic field area, for instance, is inversely related to the variation in cellular density for many cell types, observed either across retinal eccentricity or between different strains of mice that differ in cell number. Dopaminergic amacrine (DA) cells, by contrast, have dendritic arbors that bear no spatial relationship to the presence of their immediate homotypic neighbors, yet it remains to be determined whether their coverage upon the retina, as a population, is conserved across variation in their total number.
View Article and Find Full Text PDFPurpose: The aim of the present study was to identify candidate genes for mediating daily adjustment of vision.
Methods: Genes important for vision and genetically associated with severe retinal diseases were tested for 24-hour rhythms in transcript levels in neuronal retina, microdissected photoreceptors, photoreceptor-related pinealocytes, and retinal pigment epithelium-choroid (RPE-choroid) complex by using quantitative PCR.
Results: Photoreceptors of wildtype mice display circadian clock-dependent regulation of visual arrestins (Arr1, Arr4) and the visual cycle gene Rdh12, whereas cells of the RPE-choroid exhibit light-dependent regulation of the visual cycle key genes Lrat, Rpe65, and Rdh5.