In the phase 2 clinical trial (AIM) of venetoclax-ibrutinib, 24 patients with mantle cell lymphoma (MCL; 23 with relapsed/refractory [R/R] disease) received ibrutinib 560 mg and venetoclax 400 mg both once daily. High complete remission (CR) and measurable residual disease negative (MRD-negative) CR rates were previously reported. With median survivor follow-up now exceeding 7 years, we report long-term results.
View Article and Find Full Text PDFGenomic sequencing of clinical samples to identify emerging variants of SARS-CoV-2 has been a key public health tool for curbing the spread of the virus. As a result, an unprecedented number of SARS-CoV-2 genomes were sequenced during the COVID-19 pandemic, which allowed for rapid identification of genetic variants, enabling the timely design and testing of therapies and deployment of new vaccine formulations to combat the new variants. However, despite the technological advances of deep sequencing, the analysis of the raw sequence data generated globally is neither standardized nor consistent, leading to vastly disparate sequences that may impact identification of variants.
View Article and Find Full Text PDFSotrovimab is an engineered human monoclonal antibody that binds a conserved region of the SARS-CoV-2 spike protein. The COMET-ICE phase III study evaluated sotrovimab for treatment of mild to moderate COVID-19 in nonhospitalized participants with ≥1 risk factor for severe disease progression. We evaluated the presence of circulating SARS-CoV-2 variants of concern or interest (VOCs/VOIs) and characterized the presence of baseline, post-baseline and emergent amino acid substitutions detected in the epitope of sotrovimab in SARS-CoV-2.
View Article and Find Full Text PDFRapidly evolving influenza A viruses (IAVs) and influenza B viruses (IBVs) are major causes of recurrent lower respiratory tract infections. Current influenza vaccines elicit antibodies predominantly to the highly variable head region of haemagglutinin and their effectiveness is limited by viral drift and suboptimal immune responses. Here we describe a neuraminidase-targeting monoclonal antibody, FNI9, that potently inhibits the enzymatic activity of all group 1 and group 2 IAVs, as well as Victoria/2/87-like, Yamagata/16/88-like and ancestral IBVs.
View Article and Find Full Text PDFBackground: [Lu]Lu-PSMA is a radioligand therapy used in metastatic castration-resistant prostate cancer (mCRPC). Despite a survival benefit, the responses for many patients receiving [Lu]Lu-PSMA are not durable, and all patients eventually develop progressive disease. The bone marrow is the most common site of progression.
View Article and Find Full Text PDFDuring the COVID-19 pandemic, SARS-CoV-2 surveillance efforts integrated genome sequencing of clinical samples to identify emergent viral variants and to support rapid experimental examination of genome-informed vaccine and therapeutic designs. Given the broad range of methods applied to generate new viral genomes, it is critical that consensus and variant calling tools yield consistent results across disparate pipelines. Here we examine the impact of sequencing technologies (Illumina and Oxford Nanopore) and 7 different downstream bioinformatic protocols on SARS-CoV-2 variant calling as part of the NIH Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) Tracking Resistance and Coronavirus Evolution (TRACE) initiative, a public-private partnership established to address the COVID-19 outbreak.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages carry distinct spike mutations resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters elicit plasma-neutralizing antibodies against Omicron BA.1, BA.
View Article and Find Full Text PDFSARS-CoV-2 Omicron sublineages carry distinct spike mutations and represent an antigenic shift resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters result in potent plasma neutralizing activity against Omicron BA.1 and BA.
View Article and Find Full Text PDFThe recently emerged SARS-CoV-2 Omicron variant encodes 37 amino acid substitutions in the spike protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody-based therapeutics. Here we show that the Omicron RBD binds to human ACE2 with enhanced affinity, relative to the Wuhan-Hu-1 RBD, and binds to mouse ACE2. Marked reductions in neutralizing activity were observed against Omicron compared to the ancestral pseudovirus in plasma from convalescent individuals and from individuals who had been vaccinated against SARS-CoV-2, but this loss was less pronounced after a third dose of vaccine.
View Article and Find Full Text PDFSARS-CoV-2 evolution threatens vaccine- and natural infection-derived immunity as well as the efficacy of therapeutic antibodies. To improve public health preparedness, we sought to predict which existing amino acid mutations in SARS-CoV-2 might contribute to future variants of concern. We tested the predictive value of features comprising epidemiology, evolution, immunology, and neural network-based protein sequence modeling, and identified primary biological drivers of SARS-CoV-2 intra-pandemic evolution.
View Article and Find Full Text PDFThe recently emerged SARS-CoV-2 Omicron variant harbors 37 amino acid substitutions in the spike (S) protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody therapeutics. Here, we show that the Omicron RBD binds to human ACE2 with enhanced affinity relative to the Wuhan-Hu-1 RBD and acquires binding to mouse ACE2. Severe reductions of plasma neutralizing activity were observed against Omicron compared to the ancestral pseudovirus for vaccinated and convalescent individuals.
View Article and Find Full Text PDFThe spillovers of betacoronaviruses in humans and the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlight the need for broad coronavirus countermeasures. We describe five monoclonal antibodies (mAbs) cross-reacting with the stem helix of multiple betacoronavirus spike glycoproteins isolated from COVID-19 convalescent individuals. Using structural and functional studies, we show that the mAb with the greatest breadth (S2P6) neutralizes pseudotyped viruses from three different subgenera through the inhibition of membrane fusion, and we delineate the molecular basis for its cross-reactivity.
View Article and Find Full Text PDFThe recent emergence of SARS-CoV-2 variants of concern and the recurrent spillovers of coronaviruses into the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here we describe a human monoclonal antibody designated S2X259, which recognizes a highly conserved cryptic epitope of the receptor-binding domain and cross-reacts with spikes from all clades of sarbecovirus. S2X259 broadly neutralizes spike-mediated cell entry of SARS-CoV-2, including variants of concern (B.
View Article and Find Full Text PDFAn ideal therapeutic anti-SARS-CoV-2 antibody would resist viral escape, have activity against diverse sarbecoviruses, and be highly protective through viral neutralization and effector functions. Understanding how these properties relate to each other and vary across epitopes would aid the development of therapeutic antibodies and guide vaccine design. Here we comprehensively characterize escape, breadth and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD).
View Article and Find Full Text PDFThe modulation of the transcriptome is among the earliest responses to infection. However, defining the transcriptomic signatures of disease is challenging because logistic, technical, and cost factors limit the size and representativeness of samples in clinical studies. These limitations lead to a poor performance of signatures when applied to new datasets.
View Article and Find Full Text PDFGenome-wide association studies (GWASs) are instrumental in identifying loci harboring common single-nucleotide variants (SNVs) that affect human traits and diseases. GWAS hits emerge in clusters, but the focus is often on the most significant hit in each trait- or disease-associated locus. The remaining hits represent SNVs in linkage disequilibrium (LD) and are considered redundant and thus frequently marginally reported or exploited.
View Article and Find Full Text PDFThe recent emergence of SARS-CoV-2 variants of concern (VOC) and the recurrent spillovers of coronaviruses in the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here, we describe a human monoclonal antibody (mAb), designated S2X259, recognizing a highly conserved cryptic receptor-binding domain (RBD) epitope and cross-reacting with spikes from all sarbecovirus clades. S2X259 broadly neutralizes spike-mediated entry of SARS-CoV-2 including the B.
View Article and Find Full Text PDFAn ideal anti-SARS-CoV-2 antibody would resist viral escape , have activity against diverse SARS-related coronaviruses , and be highly protective through viral neutralization and effector functions . Understanding how these properties relate to each other and vary across epitopes would aid development of antibody therapeutics and guide vaccine design. Here, we comprehensively characterize escape, breadth, and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD), including S309 , the parental antibody of the late-stage clinical antibody VIR-7831.
View Article and Find Full Text PDFSARS-CoV-2 entry is mediated by the spike (S) glycoprotein which contains the receptor-binding domain (RBD) and the N-terminal domain (NTD) as the two main targets of neutralizing antibodies (Abs). A novel variant of concern (VOC) named CAL.20C (B.
View Article and Find Full Text PDF