Epileptogenesis is characterized by intrinsic changes in neuronal firing, resulting in hyperactive neurons and the subsequent generation of seizure activity. These alterations are accompanied by changes in gene transcription networks, first with the activation of early-immediate genes and later with the long-term activation of genes involved in memory. Our objective was to engineer a promoter containing binding sites for activity-dependent transcription factors upregulated in chronic epilepsy (EpiPro) and validate it in multiple rodent models of epilepsy.
View Article and Find Full Text PDFOver a third of patients with temporal lobe epilepsy (TLE) are not effectively treated with current anti-seizure drugs, spurring the development of gene therapies. The injection of adeno-associated viral vectors (AAV) into the brain has been shown to be a safe and viable approach. However, to date, AAV expression of therapeutic genes has not been regulated.
View Article and Find Full Text PDFIt was discovered that electrical kindling of VGAT-Cre mice led to the spontaneous motor and electrographic seizures. A recent paper focused on how unique VGAT-Cre mice were used in developing spontaneous recurring seizures (SRS) after kindling and a likely mechanism - insertion of Cre into the VGAT gene - disrupted its expression and reduced GABAergic tone. The present study extends these observations to a larger cohort of mice, focusing on key issues such as how long the SRS continues after kindling and the effect of the animal's sex and age.
View Article and Find Full Text PDFObjective: Development of novel therapies for temporal lobe epilepsy is hindered by a lack of models suitable for drug screening. While testing the hypothesis that "inhibiting inhibitory neurons" was sufficient to induce seizures, it was discovered that a mild electrical kindling protocol of VGAT-Cre mice led to spontaneous motor and electrographic seizures. This study characterizes these seizures and investigates the mechanism.
View Article and Find Full Text PDFPeripheral nerve injury induces increased expression of thrombospondin-4 (TSP4) in spinal cord and dorsal root ganglia that contributes to neuropathic pain states through unknown mechanisms. Here, we test the hypothesis that TSP4 activates its receptor, the voltage-gated calcium channel Cavα2δ1 subunit (Cavα2δ1), on sensory afferent terminals in dorsal spinal cord to promote excitatory synaptogenesis and central sensitization that contribute to neuropathic pain states. We show that there is a direct molecular interaction between TSP4 and Cavα2δ1 in the spinal cord in vivo and that TSP4/Cavα2δ1-dependent processes lead to increased behavioral sensitivities to stimuli.
View Article and Find Full Text PDFT-type calcium channels play essential roles in regulating neuronal excitability and network oscillations in the brain. Mutations in the gene encoding Cav3.2 T-type Ca(2+) channels, CACNA1H, have been found in association with various forms of idiopathic generalized epilepsy.
View Article and Find Full Text PDFHere, we describe a new mechanism by which glutamate (Glu) and trace metals reciprocally modulate activity of the Ca(v)2.3 channel by profoundly shifting its voltage-dependent gating. We show that zinc and copper, at physiologically relevant concentrations, occupy an extracellular binding site on the surface of Ca(v)2.
View Article and Find Full Text PDFCa(v)3.2 T-type channels contain a high affinity metal binding site for trace metals such as copper and zinc. This site is occupied at physiologically relevant concentrations of these metals, leading to decreased channel activity and pain transmission.
View Article and Find Full Text PDFThe G(q)-coupled tachykinin receptor (neurokinin-1 receptor [NK-1R]) modulates N-type Ca(2+) channel (Ca(V)2.2 or N channel) activity at two distinct sites by a pathway involving a lipid metabolite, most likely arachidonic acid (AA). In another study published in this issue (Heneghan et al.
View Article and Find Full Text PDFAlpha-lipoic acid (1,2-dithiolane-3-pentanoic acid; lipoic acid) is an endogenous compound used to treat pain disorders in humans, but its mechanisms of analgesic action are not well understood. Here, we show that lipoic acid selectively inhibited native Ca(V)3.2 T-type calcium currents (T-currents) and diminished T-channel-dependent cellular excitability in acutely isolated rat sensory neurons.
View Article and Find Full Text PDFAntihypertensive drugs of the "calcium channel blocker" or "calcium antagonist" class have been used to establish the physiological role of L-type Ca(2+) channels in vascular smooth muscle. In contrast, there has been limited progress on the pharmacology T-type Ca(2+) channels. T-type channels play a role in cardiac pacemaking, aldosterone secretion, and renal hemodynamics, leading to the hypothesis that mixed T- and L-type blockers may have therapeutic advantages over selective L-type blockers.
View Article and Find Full Text PDFBackground: The Ca(v)beta subunits of high voltage-activated Ca(2+) channels control the trafficking and biophysical properties of the alpha(1) subunit. The Ca(v)beta-alpha(1) interaction site has been mapped by crystallographic studies. Nevertheless, how this interaction leads to channel regulation has not been determined.
View Article and Find Full Text PDFMolecular diversity of T-type/Ca(v)3 Ca2+ channels is created by expression of three genes and alternative splicing of those genes. Prompted by the important role of the I-II linker in gating and surface expression of Ca(v)3 channels, we describe here the properties of a novel variant that partially deletes this loop. The variant is abundantly expressed in rat brain, even exceeding transcripts with the complete exon 8.
View Article and Find Full Text PDFThe intracellular loops that interlink the four transmembrane domains of Ca(2+)- and Na(+)-channels (Ca(v), Na(v)) have critical roles in numerous forms of channel regulation. In particular, the intracellular loop that joins repeats I and II (I-II loop) in high voltage-activated (HVA) Ca(2+) channels possesses the binding site for Ca(v)beta subunits and plays significant roles in channel function, including trafficking the alpha(1) subunits of HVA channels to the plasma membrane and channel gating. Although there is considerable divergence in the primary sequence of the I-II loop of Ca(v)1/Ca(v)2 HVA channels and Ca(v)3 LVA/T-type channels, evidence for a regulatory role of the I-II loop in T-channel function has recently emerged for Ca(v)3.
View Article and Find Full Text PDFMutations in the I-II loop of Ca(v)3.2 channels were discovered in patients with childhood absence epilepsy. All of these mutations increased the surface expression of the channel, whereas some mutations, and in particular C456S, altered the biophysical properties of channels.
View Article and Find Full Text PDFRecent studies have demonstrated an important role for T-type Ca2+ channels (T-channels) in controlling the excitability of peripheral pain-sensing neurons (nociceptors). However, the molecular mechanisms underlying the functions of T-channels in nociceptors are poorly understood. Here, we demonstrate that reducing agents as well as endogenous metal chelators sensitize C-type dorsal root ganglion nociceptors by chelating Zn2+ ions off specific extracellular histidine residues on Ca(v)3.
View Article and Find Full Text PDFT-type Ca(2+) channels encoded by voltage-gated Ca(2+) channel (Ca(v)) 3.1, 3.2, and 3.
View Article and Find Full Text PDFSequencing of the T-type Ca2+ channel gene CACNA1H revealed 12 nonsynonymous single nucleotide polymorphisms (SNPs) that were found only in childhood absence epilepsy (CAE) patients. One SNP, G773D, was found in two patients. The present study reports the finding of a third patient with this SNP, as well as analysis of their parents.
View Article and Find Full Text PDF