Publications by authors named "Iuliana E Sendroiu"

DNA microarrays are invaluable tools for the detection and identification of nucleic acids in biosensing applications. The sensitivity and selectivity of multiplexed single-stranded DNA (ssDNA) surface bioaffinity sensing can be greatly enhanced when coupled to a surface enzymatic reaction. Herein we describe a novel method where the specific sequence-dependent adsorption of a target ssDNA template molecule onto an ssDNA-modified gold microarray is followed with the generation of multiple copies of ssRNA via in situ surface transcription by RNA polymerase.

View Article and Find Full Text PDF

DNA microarrays are invaluable tools for biosensing applications such as diagnostic detection of DNA and analysis of gene expression. Surface plasmon resonance imaging can detect unlabeled oligonucleotide targets adsorbed to the array elements. The variety of biosensing applications can be expanded by enzymatic manipulation of DNA microarray elements, and the sensitivity of detection can be enhanced with the use of oligonucleotide immobilized onto a gold nanoparticle surface.

View Article and Find Full Text PDF

A novel method for preparing gold nanorods that are first coated with a thin silica film and then functionalized with single-stranded DNA (ssDNA) is presented. Coating the nanorods with 3-5 nm of silica improves their solubility and stability. Amine-modified ssDNA is attached to the silica-coated gold nanorods via a reductive amination reaction with an aldehyde trimethoxysilane monolayer.

View Article and Find Full Text PDF

An ex situ nanoparticle DNA detection assay utilizing DNA-modified nanoparticles attached to DNA monolayer gratings on glass substrates is developed. The assay utilizes the simultaneous hybridization of a single stranded DNA (ssDNA) target molecule to both an amine-modified DNA oligonucleotide attached to an amine-reactive glass surface and a thiol-modified DNA oligonucleotide attached to a 13 nm gold nanoparticle. Surface plasmon resonance imaging measurements are used to characterize the two sequential hybridization adsorption processes employed in the assay, and fluorescence microscopy is used to characterize the formation of DNA monolayer gratings via the photopatterning of the amine-reactive glass slides.

View Article and Find Full Text PDF

The effects of interparticle distance on the UV-visible absorption spectrum of gold nanocrystals aggregates in aqueous solution have been investigated. The aggregates were produced by ion-templated chelation of omega-mercaptocarboxylic acid ligands covalently attached to the nanoparticles surface. Variation of the ligand chain length provides control over the interparticle separation in the aggregates.

View Article and Find Full Text PDF