Publications by authors named "Iulia Minda"

Perovskite based photovoltaic devices are popularised by the rapid increase in their efficiencies. Understanding the fundamental physics and chemistry processes occurring upon excitation is key. We monitored the temporal evolution of the population and depopulation dynamics of various electronic states in FA MA PbI Br by means of ultrafast transient absorption spectroscopy in the visible and near infrared spectral regions in order to build a fully consistent charge dynamics model of the initial photoprocesses.

View Article and Find Full Text PDF

Charge transfer dynamics in fully operational dye sensitised solar cells consisting of an electrolyte or organic spiroOMeTAD in contact with a highly porous electrodeposited ZnO film sensitised with a monolayer of the indoline dye DN216 were observed using ultrafast transient absorption spectroscopy. From the temporal evolution of spectral signatures assigned with the help of spectroelectrochemical experiments to the population and depopulation of initial, transient and final states, a model was completed for the multistep injection of photoexcited electrons from the molecular absorber to the ZnO acceptor. Injection was found to occur via three different paths with three characteristic rates: directly from the dye's lowest unoccupied molecular orbital into the ZnO conduction band (200 fs) and via intermediate molecular dominated and surface dominated hybrid states (2 ps and 10 ps, respectively).

View Article and Find Full Text PDF

Dye-sensitized solar cells based on a mesoporous ZnO substrate were sensitized with the indoline derivatives DN91, DN216 and DN285. The chromophore is the same for each of these dyes. They differ from each other in the length of an alkyl chain, which provides a second anchor to the ZnO surface and prolongs cell lifetime.

View Article and Find Full Text PDF