In the version of this article initially published, the equal contribution of the third author was omitted. The footnote links for that author should be "Sara Nejat" and the correct statement is as follows: "These authors contributed equally: Sarah A. Dick, Jillian A.
View Article and Find Full Text PDFMacrophages promote both injury and repair after myocardial infarction, but discriminating functions within mixed populations remains challenging. Here we used fate mapping, parabiosis and single-cell transcriptomics to demonstrate that at steady state, TIMD4LYVE1MHC-IICCR2 resident cardiac macrophages self-renew with negligible blood monocyte input. Monocytes partially replaced resident TIMD4LYVE1MHC-IICCR2 macrophages and fully replaced TIMD4LYVE1MHC-IICCR2 macrophages, revealing a hierarchy of monocyte contribution to functionally distinct macrophage subsets.
View Article and Find Full Text PDFInnate and adaptive immune cells modulate heart failure pathogenesis during viral myocarditis, yet their identities and functions remain poorly defined. We utilized a combination of genetic fate mapping, parabiotic, transcriptional, and functional analyses and demonstrated that the heart contained two major conventional dendritic cell (cDC) subsets, CD103 and CD11b, which differentially relied on local proliferation and precursor recruitment to maintain their tissue residency. Following viral infection of the myocardium, cDCs accumulated in the heart coincident with monocyte infiltration and loss of resident reparative embryonic-derived cardiac macrophages.
View Article and Find Full Text PDF