A facile synthetic route toward either 3- or 5-fluoroalkyl-substituted isoxazoles or pyrazoles containing an additional functionalization site was developed and applied on a multigram scale. The elaborated approach extends the scope of fluoroalkyl substituents for introduction into the heterocyclic moiety, and uses convenient transformations of the side chain for incorporation of fluoroalkyl-substituted azoles into the structures of biologically active molecules. The utility of the obtained building blocks for isosteric replacement of alkyl-substituted isoxazole and pyrazole was shown by the synthesis of fluorinated Isocarboxazid and Mepiprazole analogues.
View Article and Find Full Text PDFA comprehensive study on the synthesis of 5-fluoroalkyl-substituted isoxazoles starting from functionalized halogenoximes is reported. One-pot metal-free [3 + 2] cycloaddition of CF-substituted alkenes and halogenoximes bearing ester, bromo, chloromethyl, and protected amino groups was developed for the preparation of 5-trifluoromethylisoxazoles. The target 3,5-disubstituted derivatives were obtained in a regioselective manner in good to excellent yield on up to 130 g scale.
View Article and Find Full Text PDFThe transmembrane (TM) proteins are gateways for molecular transport across the cell membrane that are often selected as potential targets for drug design. The bilitranslocase (BTL) protein facilitates the uptake of various anions, such as bilirubin, from the blood into the liver cells. As previously established, there are four hydrophobic transmembrane segments (TM1-TM4), which constitute the structure of the transmembrane channel of the BTL protein.
View Article and Find Full Text PDF