With expanding recent outbreaks and a lack of treatment options, the Zika virus (ZIKV) poses a severe health concern. The availability of ZIKV NS2B-NS3 co-crystallized structures paved the way for rational drug discovery. A computer-aided structure-based approach was used to screen a diverse library of compounds against ZIKV NS2B-NS3 protease.
View Article and Find Full Text PDFNorovirus is the leading cause of acute gastroenteritis worldwide with a yearly reported 700 million cases driving a $60 billion global socioeconomic burden. With no United States Food and Drug Administration approved therapeutics and the chance for severe chronic infection and life-threatening complications, researchers have identified the protease as a potential target. However, drug development has focused on the norovirus GI.
View Article and Find Full Text PDFBackground: Noroviruses are the leading cause of acute gastroenteritis worldwide. Norovirus proteases, which are responsible for cleavage of the viral polyprotein, have become an attractive drug target to treat norovirus infections. Genogroup II (GII) noroviruses are responsible for a majority of outbreaks; however, limited data exists regarding GII norovirus proteases.
View Article and Find Full Text PDFHIV-1 protease (PR) is a 99 amino acid protein responsible for proteolytic processing of the viral polyprotein - an essential step in the HIV-1 life cycle. Drug resistance mutations in PR that are selected during antiretroviral therapy lead to reduced efficacy of protease inhibitors (PI) including darunavir (DRV). To identify the structural mechanisms associated with the DRV resistance mutation L33F, we performed X-ray crystallographic studies with a multi-drug resistant HIV-1 protease isolate that contains the L33F mutation (MDR769 L33F).
View Article and Find Full Text PDFTreatment of Human Immunodeficiency Virus remains challenging due to the emergence of drug resistant strains under the selective pressure produced by standard anti-retroviral therapy. To explore the structural mechanisms of drug resistance, we performed 40 ns molecular dynamics simulations on three multi-drug resistant HIV-1 protease clinical isolates from patients attending an infectious diseases clinic in Detroit, MI. We identify a novel structural role for the I47V, V32I, I54M and L90M major resistance mutations in flap opening and closure of MDR-PR isolates.
View Article and Find Full Text PDFHuman immunodeficiency virus type-1 (HIV-1) protease, a homodimeric aspartyl protease, is a critical drug target in designing anti-retroviral drugs to treat HIV/AIDS. Multidrug-resistant (MDR) clinical isolate-769 HIV-1 protease (PDB ID: 3PJ6) has been shown to exhibit expanded active site cavity with wide-open conformation of flaps (Gly48-Gly52) due to the accumulation of multiple mutations. In this study, an HIV-1 protease dimerization inhibitor (PDI)-TLF-PafF, was evaluated against MDR769 HIV-1 protease using X-ray crystallography.
View Article and Find Full Text PDFCrystal structure of multidrug-resistant (MDR) clinical isolate 769, human immunodeficiency virus type-1 (HIV-1) protease in complex with lopinavir (LPV) (PDB ID: 1RV7) showed altered binding orientation of LPV in the expanded active site cavity, causing loss of contacts and decrease in potency. In the current study, with a goal to restore the lost contacts, three libraries of LPV analogs containing extended P1 and/or P1' phenyl groups were designed and docked into the expanded active site cavity of the MDR769 HIV-1 protease. The compounds were then ranked based on three criteria: binding affinity, overall binding profile and predicted pharmacological properties.
View Article and Find Full Text PDFProper proteolytic processing of the HIV-1 Gag/Pol polyprotein is required for HIV infection and viral replication. This feature has made HIV-1 protease an attractive target for antiretroviral drug design for the treatment of HIV-1 infected patients. To examine the role of the P1 and P1'positions of the substrate in inhibitory efficacy of multi-drug resistant HIV-1 protease 769 (MDR 769), we performed a series of structure-function studies.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2013
Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: 1TW7), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded active site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution.
View Article and Find Full Text PDFHIV-1 integrase is an essential enzyme necessary for the replication of the HIV virus as it catalyzes the insertion of the viral genome into the host chromosome. Raltegravir was the first integrase inhibitor approved by the FDA for antiretroviral treatment. HIV patients on raltegravir containing regimens often develop drug resistance mutations at residue 140 and 148 in the catalytic 140's loop resulting in a 5-10 fold decrease in susceptibility to raltegravir.
View Article and Find Full Text PDFLopinavir (LPV) is a second generation HIV-1 protease inhibitor. Drug resistance has rapidly emerged against LPV since its US FDA approval on September 15, 2000. Mutations at residues 32I, L33F, 46I, 47A, I54V, V82A, I84V, and L90M render the protease drug resistant against LPV.
View Article and Find Full Text PDFRitonavir (RTV) is a first generation HIV-1 protease inhibitor with rapidly emerging drug resistance. Mutations at residues 46, 54, 82 and 84 render the HIV-1 protease drug resistant against RTV. We report the crystal structure of multi-drug resistant (MDR) 769 HIV-1 protease (carrying resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84 and 90) complexed with RTV and the in vitro enzymatic IC(50) of RTV against MDR HIV-1 protease.
View Article and Find Full Text PDFThe success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates.
View Article and Find Full Text PDFTwo potent inhibitors (compounds 1 and 2) of malarial aspartyl protease, plasmepsin-II, were evaluated against wild type (NL4-3) and multidrug-resistant clinical isolate 769 (MDR) variants of human immunodeficiency virus type-1 (HIV-1) aspartyl protease. Enzyme inhibition assays showed that both 1 and 2 have better potency against NL4-3 than against MDR protease. Crystal structures of MDR protease in complex with 1 and 2 were solved and analyzed.
View Article and Find Full Text PDFDesigning HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1'F.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2011
Darunavir and tipranavir are two inhibitors that are active against multi-drug resistant (MDR) HIV-1 protease variants. In this study, the invitro inhibitory efficacy was tested against a MDR HIV-1 protease variant, MDR 769 82T, containing the drug resistance mutations of 46L/54V/82T/84V/90M. Crystallographic and enzymatic studies were performed to examine the mechanism of resistance and the relative maintenance of potency.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
June 2011
The flexible flaps and the 80s loops (Pro79-Ile84) of HIV-1 protease are crucial in inhibitor binding. Previously, it was reported that the crystal structure of multidrug-resistant 769 (MDR769) HIV-1 protease shows a wide-open conformation of the flaps owing to conformational rigidity acquired by the accumulation of mutations. In the current study, the effect of mutations on the conformation of the 80s loop of MDR769 HIV-1 protease variants is reported.
View Article and Find Full Text PDFUnder drug selection pressure, emerging mutations render HIV-1 protease drug resistant, leading to the therapy failure in anti-HIV treatment. It is known that nine substrate cleavage site peptides bind to wild type (WT) HIV-1 protease in a conserved pattern. However, how the multidrug-resistant (MDR) HIV-1 protease binds to the substrate cleavage site peptides is yet to be determined.
View Article and Find Full Text PDFGlomerular visceral epithelial cells (podocytes) appear to play a central role in maintaining the selective filtration barrier of the renal glomerulus. While the immunoglobulin superfamily member Nephrin was proposed to act as a cell adhesion molecule at the podocyte intercellular junction necessary for maintaining glomerular perm selectivity, the Nephrin ligand has not been identified. The existence of a new subfamily of Nephrin-like molecules including Neph1 was recently described.
View Article and Find Full Text PDFStudy of podocyte biology has been hampered by limitations in available experimental models that both recapitulate the in vivo phenotypes of this cell and can be readily and specifically manipulated at the molecular level. Transgenic manipulation of the podocyte represents one approach that might circumvent these limitations. The purpose of this study was to identify a promoter-enhancer that would direct the expression of transgenes in a podocyte-specific manner.
View Article and Find Full Text PDF