Publications by authors named "Iudin D"

In the past decade, stimuli-responsive hydrogels are increasingly studied as biomaterials for tissue engineering and regenerative medicine purposes. Smart hydrogels can not only replicate the physicochemical properties of the extracellular matrix but also mimic dynamic processes that are crucial for the regulation of cell behavior. Dynamic changes can be influenced by the hydrogel itself (isotropic vs anisotropic) or guided by applying localized triggers.

View Article and Find Full Text PDF

A new mechanism of charge transport inside a thundercloud is suggested and numerically investigated. The considered mechanism can be called "relay" because it is provided by a dynamical network of a relatively small amount of continuously decaying and arising conducting plasma formations. It manifests itself in two consecutive modes corresponding to pre-streamer and streamer/leader stages of thundercloud development.

View Article and Find Full Text PDF

The growing number of drug-resistant pathogenic bacteria poses a global threat to human health. For this reason, the search for ways to enhance the antibacterial activity of existing antibiotics is now an urgent medical task. The aim of this study was to develop novel delivery systems for polymyxins to improve their antimicrobial properties against various infections.

View Article and Find Full Text PDF

In this work, we represent the lightning initiation scenario as a sequence of two transitions of discharge activity to progressively larger spatial scales: the first one is from small-scale avalanches to intermediate-scale streamers; and the second one is from streamers to the lightning seed. We postulate the existence of ion production centers in the cloud, whose occurrence is caused by electric field bursts accompanying hydrometeor collisions (or near collisions) in the turbulent thundercloud environment. When a new ion production center is created inside (fully or partially) the residual ion spot left behind by a previously established center, there is a cumulative effect in the increasing of ion concentration.

View Article and Find Full Text PDF

Polymyxins are peptide antibiotics that are highly efficient against many multidrug resistant pathogens. However, the poor stability of polymyxins in the bloodstream requires the administration of high drug doses that, in turn, can lead to polymyxin toxicity. Consequently, different delivery systems have been considered for polymyxins to overcome these obstacles.

View Article and Find Full Text PDF

Living neuronal networks in dissociated neuronal cultures are widely known for their ability to generate highly robust spatiotemporal activity patterns in various experimental conditions. Such patterns are often treated as neuronal avalanches that satisfy the power scaling law and thereby exemplify self-organized criticality in living systems. A crucial question is how these patterns can be explained and modeled in a way that is biologically meaningful, mathematically tractable and yet broad enough to account for neuronal heterogeneity and complexity.

View Article and Find Full Text PDF

Abstract-Phenomena having the property of a scale invariance (that is, maintaining invariable structure in certain range of scales) are typical for biosystems of different levels. In this review, main manifestations of the scale-invariant phenomena at different levels of biological organization (including ontogenetic aspects) are stated, and the reasons of such wide distribution of fractal structures in biology are discussed. Almost all biological systems can be described in terms of synergetics as open nonequilibrium systems that exist due to substance and energy flow passing through them.

View Article and Find Full Text PDF

The spatial structure of neutral communities has nontrivial properties, which are described traditionally by the Species-area relationship (SAR) and the Species Abundance Distribution, (SAD). Fractal analysis is an alternative way to describe community structure, the final product of which - a multifractal spectrum - combines information both on the scaling parameters of species richness (similar to SAR), and about species' relative abundances (similar to SAD). We conducted a multifractal analysis of community spatial structure in a neutral lattice-based model.

View Article and Find Full Text PDF

The principles and methods of fractal analysis of the species structure of freshwater phytoplankton, zooplankton, and macrozoobenthos communities of plain water reservoirs and urban waterbodies are discussed. The theoretical foundation and experimental verification are provided for the authors' concept of self-similar (quasi-fractal) nature of the species structure of communities. According to this concept, the adequate mathematical image of species richness accumulation with growing sampling effort is quasi-monofractals, while the generalized geometric image of the species structure of the community is a multifractal spectrum.

View Article and Find Full Text PDF

Two approaches are suggested for describing taxic diversity as a fractal, or self-similar, object. One of them called "sampling approach" is based on necessity of taking into account the sampling process and on proceeding from the real ecological practice of exploration of the community structure. Verification of this approach is fulfilled using a multifractal analysis of the generic diversity of vascular plants of the National Park "Samarskaya Luka".

View Article and Find Full Text PDF

Applications of the fractal to describing the species structure of communities are discussed. Fundamental notions of fractal geometry are explained in the first part. The problem of applying the concept of fractal to describe the spatial allocation of particular species and of community as a whole is reviewed in the second part.

View Article and Find Full Text PDF

We have proposed and validated a method for quantitative assessment of phenotypic diversity of natural populations. Method is based on the fluctuated asymmetry (FA) indices of bilateral organisms, and it is applicable for biondicative investigations. Convolution of functions was proposed to estimate the mean (population) value of FA complex of features.

View Article and Find Full Text PDF

We have investigated the fractal dynamics of intracloud microdischarges responsible for the formation of a so-called drainage system of electric charge transport inside a cloud volume. Microdischarges are related to the nonlinear stage of multiflow instability development, which leads to the generation of a small-scale intracloud electric structure. The latter is modeled by using a two-dimensional lattice of finite-state automata.

View Article and Find Full Text PDF