Hypomagnesemia continues to cause difficult clinical problems, such as significant cardiac arrhythmias where intravenous magnesium therapy can be lifesaving. Nutritional deficiency of magnesium may present with some subtle symptoms such as leg cramps and occasional palpitation. We have investigated dietary-induced magnesium deficiency in rodent models to assess the pathobiology associated with prolonged hypomagnesemia.
View Article and Find Full Text PDFThe aim of this study was to determine the effect of magnesium deficiency on small intestinal morphology and function. Rats were assigned to 4 groups and placed on magnesium sufficient or deficient diet for 1 or 3 weeks. Infiltration of neutrophils and mucosal injury were assessed in stained sections of small intestine.
View Article and Find Full Text PDFMagnesium is a micronutrient essential for the normal functioning of the cardiovascular system, and Mg deficiency (MgD) is frequently associated in the clinical setting with chronic pathologies such as CHF, diabetes, hypertension, and other pathologies. Animal models of MgD have demonstrated a systemic pro-inflammatory/pro-oxidant state, involving multiple tissues/organs including neuronal, hematopoietic, cardiovascular, and gastrointestinal systems; during later stages of MgD, a cardiomyopathy develops which may result from a cascade of inflammatory events. In rodent models of dietary MgD, a significant rise in circulating levels of proinflammatory neuropeptides such as substance P (SP) and calcitonin gene-related peptide among others, was observed within days (1-7) of initiating the Mg-restricted diet, and implicated a neurogenic trigger for the subsequent inflammatory events; this early "neurogenic inflammation" phase may be mediated in part, by the Mg-gated N: -methyl-D-aspartate (NMDA) receptor/channel complex.
View Article and Find Full Text PDF