Publications by authors named "Itzkan I"

Bile duct cancer is the second most common primary liver cancer, with most diagnoses occurring in the advanced stages. This leads to a poor survival rate, which means a technique capable of reliably detecting pre-cancer in the bile duct is urgently required. Unfortunately, radiological imaging lacks adequate accuracy for distinguishing dysplastic and benign biliary ducts, while endoscopic techniques, which can directly assess the bile duct lining, often suffer from insufficient sampling.

View Article and Find Full Text PDF

The observation of biological structures in live cells beyond the diffraction limit with super-resolution fluorescence microscopy is limited by the ability of fluorescence probes to permeate live cells and the effect of these probes, which are often toxic, on cellular behavior. Here we present a coherent confocal light scattering and absorption spectroscopic microscopy that for the first time enables the use of large numerical aperture optics to characterize structures in live cells down to 10 nm spatial scales, well beyond the diffraction limit. Not only does this new capability allow high resolution microscopy with light scattering contrast, but it can also be used with almost any light scattering spectroscopic application which employs lenses.

View Article and Find Full Text PDF

Bacterial infections are one of the major causes of death worldwide. The identification of a bacterial species that is the source of an infection generally takes a long time, and often exceeds the treatment window for seriously ill patients. Many of these deaths are preventable if the bacterial species can be identified quickly.

View Article and Find Full Text PDF

Organoids formed from human induced pluripotent stem cells (hiPSCs) could be a limitless source of functional tissue for transplantations in many organs. Unfortunately, fine-tuning differentiation protocols to form large quantities of hiPSC organoids in a controlled, scalable, and reproducible manner is quite difficult and often takes a very long time. Recently, we introduced a new approach of rapid organoid formation from dissociated hiPSCs and endothelial cells using microfabricated cell-repellent microwell arrays.

View Article and Find Full Text PDF

Pancreatic cancer has one of the worst survival rates of all major cancers, with pancreatic cystic lesions accounting for one in three pancreatic surgeries. The current gold-standard for diagnosis of pancreatic cyst malignancy is based on the endoscopic ultrasound guided fine-needle aspiration (EUS-FNA) procedure, which suffers from a low accuracy in detecting malignancy. Here we present the design and two-photon polymerization based fabrication of refractive and reflective non-contact probes, capable of rapid surveillance of the entire internal cyst surface-an advance over the contact probe we recently developed that allowed, for the first time, reliable evaluation of pancreatic cyst malignant potential .

View Article and Find Full Text PDF

This paper reports the application of endoscopic light scattering spectroscopy (LSS) with light gating to detect malignancies in the biliary and pancreatic ducts, and also reviews the application of endoscopic LSS for differentiating cystic neoplasms in the pancreas and detecting invisible dysplasia in Barrett's esophagus. Information about tissue structure within the superficial epithelium where malignancy starts is present within the spectra of reflected light. Fortunately, this component of the reflected light is not yet randomized.

View Article and Find Full Text PDF

Esophageal adenocarcinoma is the most rapidly growing cancer in America. Although the prognosis after diagnosis is unfavorable, the chance of a successful outcome increases tremendously if detected early while the lesion is still dysplastic. Unfortunately, the present standard-of-care, endoscopic surveillance, has major limitations, since dysplasia is invisible, often focal, and systematic biopsies typically sample less than one percent of the esophageal lining and therefore easily miss malignancies.

View Article and Find Full Text PDF

The enormous increase of Raman signal in the vicinity of metal nanoparticles allows surface-enhanced Raman spectroscopy (SERS) to be employed for label-free detection of substances at extremely low concentrations. However, the ultimate potential of label-free SERS to identify pharmaceutical compounds at low concentrations, especially in relation to biofluid sensing, is far from being fully realized. Opioids are a particular challenge for rapid clinical identification because their molecular structural similarities prevent their differentiation with immunolabeling approaches.

View Article and Find Full Text PDF

Pancreatic cancers are usually detected at an advanced stage and have poor prognosis. About one fifth of these arise from pancreatic cystic lesions. Yet not all lesions are precancerous, and imaging tools lack adequate accuracy for distinguishing precancerous from benign cysts.

View Article and Find Full Text PDF

The biomedical uses for the spectroscopy of scattered light by micro and nanoscale objects can broadly be classified into two areas. The first, often called light scattering spectroscopy (LSS), deals with light scattered by dielectric particles, such as cellular and sub-cellular organelles, and is employed to measure their size or other physical characteristics. Examples include the use of LSS to measure the size distributions of nuclei or mitochondria.

View Article and Find Full Text PDF

The ability to effectively control and optimize surface modification of metal nanoparticles is paramount to the ability to employ metal nanoparticles as diagnostic and therapeutic agents in biology and medicine. Here we present a high-throughput two-dimensional-grid gel electrophoresis cell (2D-GEC)-based method, capable of optimizing the surface modification of as many as 96 samples of metal nanoparticles in approximately 1 h. The 2D-GEC method determines not only the average zeta-potential of the modified particles but also the homogeneity of the surface modification by measuring the distance between the front of the sample track and the area where the maximum optical density is achieved.

View Article and Find Full Text PDF

This article reports the evolution of scanning spectral imaging techniques using scattered light for minimally invasive detection of early cancerous changes in tissue and cell biology applications. Optical spectroscopic techniques have shown promising results in the diagnosis of disease on a cellular scale. They do not require tissue removal, can be performed in vivo, and allow for real time diagnoses.

View Article and Find Full Text PDF

From astronomy to cell biology, the manner in which light propagates in turbid media has been of central importance for many decades. However, light propagation near the point-of-entry in turbid media has never been analytically described, until now. Here we report a straightforward and accurate method that overcomes this longstanding, unsolved problem in radiative transport.

View Article and Find Full Text PDF

Gold nanorods can be used as extremely bright labels for differential light scattering measurements using two closely spaced wavelengths, thereby detecting human disease through several centimeters of tissue in vivo. They have excellent biocompatibility, are non-toxic, and are not susceptible to photobleaching. They have narrow, easily tunable plasmon spectral lines and thus can image multiple molecular targets simultaneously.

View Article and Find Full Text PDF

Esophageal cancer is increasing in frequency in the United States faster than any other cancer. Barrett's esophagus, an otherwise benign complication of esophageal reflux, affects approximately three million Americans and precedes almost all cases of esophageal cancer. If detected as high-grade dysplasia (HGD), most esophageal cancers can be prevented.

View Article and Find Full Text PDF

This letter reports the development of an endoscopic polarized scanning spectroscopy (EPSS) instrument compatible with existing endoscopes. This instrument uses light scattering spectroscopy (LSS). In proof-of-principle studies using a single-point instrument, LSS has successfully demonstrated the ability to identify pre-cancer in the epithelial tissues of five different organs, including Barrett's esophagus (BE).

View Article and Find Full Text PDF

Present techniques for prenatal diagnosis are invasive and present significant risks of fetal loss. Noninvasive prenatal diagnosis utilizing fetal nucleated red blood cells (fNRBC) circulating in maternal peripheral blood has received attention, since it poses no risk to the fetus. However, because of the failure to find broadly applicable identifiers that can differentiate fetal from adult NRBC, reliable detection of viable fNRBC in amounts sufficient for clinical use remains a challenge.

View Article and Find Full Text PDF

We demonstrate the use of Raman spectroscopy to measure the concentration of many important constituents (analytes) in serum and whole blood samples at physiological concentration in vitro across a multipatient data set. A near-infrared (830-nm) diode laser generates Raman spectra that contain superpositions of Raman signals from different analytes. Calibrations for glucose, cholesterol, urea, and other analytes are developed by use of partial least-squares cross validation.

View Article and Find Full Text PDF

We present a mathematical model that describes the spatial distribution of photons in fluorescence endoscopic images, resulting in expressions for image signal-to-noise ratio and resolution. This model was applied to quantitative analysis of fluorescence images collected from human colonic mucosa with a fiber-optic and an electronic endoscope. It provides a tool for the design of fluorescence endoscopic imaging systems and for extraction of quantitative information about image features.

View Article and Find Full Text PDF

This article reports the development of an optical imaging technique, confocal light absorption and scattering spectroscopic (CLASS) microscopy, capable of noninvasively determining the dimensions and other physical properties of single subcellular organelles. CLASS microscopy combines the principles of light-scattering spectroscopy (LSS) with confocal microscopy. LSS is an optical technique that relates the spectroscopic properties of light elastically scattered by small particles to their size, refractive index, and shape.

View Article and Find Full Text PDF

We have developed a novel optical method for observing submicrometer intracellular structures in living cells, which is called confocal light absorption and scattering spectroscopic (CLASS) microscopy. It combines confocal microscopy, a well-established high-resolution microscopic technique, with light-scattering spectroscopy. CLASS microscopy requires no exogenous labels and is capable of imaging and continuously monitoring individual viable cells, enabling the observation of cell and organelle functioning at scales of the order of 100 nm.

View Article and Find Full Text PDF

Biomedical imaging with light-scattering spectroscopy (LSS) is a novel optical technology developed to probe the structure of living epithelial cells in situ without need for tissue removal. LSS makes it possible to distinguish between single backscattering from epithelial-cell nuclei and multiply scattered light. The spectrum of the single backscattering component is further analyzed to provide quantitative information about the epithelial-cell nuclei such as nuclear size, degree of pleomorphism, degree of hyperchromasia and amount of chromatin.

View Article and Find Full Text PDF

Background: Raman spectroscopy has advantages over infrared absorption spectroscopy. Combined with a novel multivariate technique, hybrid linear analysis (HLA), low prediction error is expected.

Methods: A near-infrared (NIR) light source excited Raman signals, and a charge coupled device (CCD) camera was used to collect the signal.

View Article and Find Full Text PDF

Background & Aims: We conducted a study to assess the potential of light-scattering spectroscopy (LSS), which can measure epithelial nuclear enlargement and crowding, for in situ detection of dysplasia in patients with Barrett's esophagus.

Methods: Consecutive patients with suspected Barrett's esophagus underwent endoscopy and systematic biopsy. Before biopsy, each site was sampled by LSS using a fiberoptic probe.

View Article and Find Full Text PDF