Publications by authors named "Itzel Jatziri Contreras Garcia"

Lead (Pb) exposure during perinatal development alters testosterone (T) concentrations and delays puberty in children and laboratory rodents. In addition, exposure to the metal during adult life decreases T and libido in men and affects male reproductive behaviour (MRB) in rats. MRB is regulated by various brain nuclei including the medial preoptic area (MPOa) and the medial amygdala (MeA), in which T and oestradiol (E) act through their respective androgen (AR) and oestrogen (ER) receptors.

View Article and Find Full Text PDF

Background: Congenital hypothyroidism (CH) is a pathology that affects various organs, including the testicles. The mechanisms by which this condition alters fertility is unknown. This study aimed at determining if experimental CH affects gonocyte differentiation and arrests meiosis; and the possible role of the Sertoli cell (SC) in this condition.

View Article and Find Full Text PDF

Epilepsy is a disorder characterized by a predisposition to generate seizures. Levetiracetam (LEV) is an antiseizure drug that has demonstrated oxidant-antioxidant effects during the early stages of epilepsy in several animal models. However, the effect of LEV on oxidant-antioxidant activity during long-term epilepsy has not been studied.

View Article and Find Full Text PDF

Levetiracetam (LEV) is a drug commonly used as an anticonvulsant. However, recent evidence points to a possible role as an antioxidant. We previously demonstrated the antioxidant properties of LEV by significantly increasing catalase and superoxide dismutase activities and decreasing the hydrogen peroxide (H2O2) levels in the hippocampus of rats with temporal lobe epilepsy (TLE) showing scavenging properties against the hydroxyl radical.

View Article and Find Full Text PDF

Dopamine (DA) and dopamine agonists (DA-Ag) have shown antiangiogenic potential through the vascular endothelial growth factor (VEGF) pathway. They inhibit VEGF and VEGF receptor 2 (VEGFR 2) functions through the dopamine receptor D2 (D2R), preventing important angiogenesis-related processes such as proliferation, migration, and vascular permeability. However, few studies have demonstrated the antiangiogenic mechanism and efficacy of DA and DA-Ag in diseases such as cancer, endometriosis, and osteoarthritis (OA).

View Article and Find Full Text PDF

The Coronavirus disease 2019 (COVID-19) affects several tissues, including the central and peripheral nervous system. It has also been related to signs and symptoms that suggest neuroinflammation with possible effects in the short, medium, and long term. Estrogens could have a positive impact on the management of the disease, not only due to its already known immunomodulator effect, but also activating other pathways that may be important in the pathophysiology of COVID-19, such as the regulation of the virus receptor and its metabolites.

View Article and Find Full Text PDF

Epilepsy is a neurological disorder in which it has been shown that the presence of oxidative stress (OS) is implicated in epileptogenesis. The literature has shown that some antiseizure drugs (ASD) have neuroprotective properties. Levetiracetam (LEV) is a drug commonly used as an ASD, and in some studies, it has been found to possess antioxidant properties.

View Article and Find Full Text PDF

Unlabelled: Dopamine (DA), its derivatives, and dopaminergic drugs are compounds widely used in the management of diseases related to the nervous system. However, DA receptors have been identified in nonneuronal tissues, which has been related to their therapeutic potential in pathologies such as sepsis or septic shock, blood pressure, renal failure, diabetes, and obesity, among others. In addition, DA and dopaminergic drugs have shown anti-inflammatory and antioxidant properties in different kinds of cells.

View Article and Find Full Text PDF

Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme that regulates energy metabolism mainly through the pentose phosphate pathway (PPP). It is well known that this enzyme participates in the antioxidant/oxidant balance via the synthesis of energy-rich molecules: nicotinamide adenine dinucleotide phosphate reduced (NADPH), the reduced form of flavin adenine dinucleotide (FADH) and glutathione (GSH), controlling reactive oxygen species generation. Coronavirus disease 19 (COVID-19), induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a public health problem that has caused approximately 4.

View Article and Find Full Text PDF

Epilepsy is a chronic disease that affects millions of people worldwide. Antiepileptic drugs (AEDs) are used to control seizures. Even though parts of their mechanisms of action are known, there are still components that need to be studied.

View Article and Find Full Text PDF

Vitamin D is a hormone involved in the regulation of important biological processes such as signal transduction, immune response, metabolic regulation and also in the nervous and vascular systems. To date, coronavirus disease 2019 (COVID-19) infection does not have a specific treatment. However, various drugs have been proposed, including those that attenuate the intense inflammatory response, and recently, the use of vitamin D, in clinical trials, as part of the treatment of COVID-19 has provided promising results.

View Article and Find Full Text PDF

Synaptic vesicle protein 2A (SV2A), the target of the antiepileptic drug levetiracetam (LEV), is expressed ubiquitously in all synaptic terminals. Its levels decrease in patients and animal models of epilepsy. Thus, changes in SV2A expression could be a critical factor in the response to LEV.

View Article and Find Full Text PDF

Temporal lobe epilepsy (TLE), the most common type of focal epilepsy, affects learning and memory; these effects are thought to emerge from changes in synaptic plasticity. Levetiracetam (LEV) is a widely used antiepileptic drug that is also associated with the reversal of cognitive dysfunction. The long-lasting effect of LEV treatment and its participation in synaptic plasticity have not been explored in early chronic epilepsy.

View Article and Find Full Text PDF

Synaptic vesicle protein 2A (SV2A) has become an attractive target of investigation because of its role in the pathophysiology of epilepsy; SV2A is expressed ubiquitously throughout the brain in all nerve terminals independently of their neurotransmitter content and plays an important but poorly defined role in neurotransmission. Previous studies have shown that modifications in the SV2A protein expression could be a direct consequence of disease severity. Furthermore, these SV2A modifications may depend on specific changes in the nerve tissue following the induction of epilepsy and might be present in both excitatory and inhibitory terminals.

View Article and Find Full Text PDF

Levetiracetam (LEV) is an anticonvulsant drug with a unique mechanism of action that is not completely understood. However, its activity profile may involve effects on excitatory and/or inhibitory neurotransmission since the primary target of LEV, synaptic vesicle protein 2A, is ubiquitously expressed in all types of synaptic vesicles. Therefore, the objective of the present study was to explore the effect of LEV (300 mg/kg/day for one week, administered via osmotic mini-pumps) on neurotransmitter release and its probable selective effect on extracellular gamma-amino butyric acid (GABA), glutamate (Glu), aspartate (Asp), glutamine (Gln), taurine (Tau) and glycine (Gly) concentrations (using in vivo microdialysis under basal and high-K conditions) in the dorsal hippocampus (DH), a region that undergoes major synaptic changes during epilepsy.

View Article and Find Full Text PDF