Stem Cell Res
April 2024
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, which results in a prominent reduction of striatal dopamine levels leading to motor alterations. The mechanisms underlying neurodegeneration in PD remain unknown. Here, we generated an induced pluripotent stem cell line from dermal fibroblasts of a Mexican patient diagnosed with sporadic PD (UNAMi002-A) and another cell line from dermal fibroblasts of a patient carrying the point mutation c.
View Article and Find Full Text PDFBackground: Traumatic spinal cord injury (SCI) is a disabling condition that affects millions of people around the world. Currently, no clinical treatment can restore spinal cord function. Comparison of molecular responses in regenerating to non-regenerating vertebrates can shed light on neural restoration.
View Article and Find Full Text PDFHuman embryonic stem cells (hESCs) differentiate into specialized cells, including midbrain dopaminergic neurons (DANs), and Non-human primates (NHPs) injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine develop some alterations observed in Parkinson's disease (PD) patients. Here, we obtained well-characterized DANs from hESCs and transplanted them into two parkinsonian monkeys to assess their behavioral and imaging changes. DANs from hESCs expressed dopaminergic markers, generated action potentials, and released dopamine (DA) in vitro.
View Article and Find Full Text PDFCentral nervous system (CNS) infections including meningitis and encephalitis, resulting from the blood-borne spread of specific microorganisms, provoke nervous tissue damage due to the inflammatory process. Moreover, different pathologies such as sepsis can generate systemic inflammation. Bacterial lipopolysaccharide (LPS) induces the release of inflammatory mediators and damage molecules, which are then released into the bloodstream and can interact with structures such as the CNS, thus modifying the blood-brain barrier's (BBB´s) and blood-cerebrospinal fluid barrier´s (BCSFB´s) function and inducing aseptic neuroinflammation.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disease caused by progressive loss of dopaminergic neurons in the substantia nigra pars compacta, which results in motor alterations. The exact mechanisms underlying the dopaminergic neurodegeneration in PD are still unknown. Here, we generated a human induced pluripotent stem cell (iPSC) line from dermal fibroblasts of a Mexican patient diagnosed with sporadic PD.
View Article and Find Full Text PDFHuman skin contains keratinocytes in the epidermis. Such cells share their ectodermal origin with the central nervous system (CNS). Recent studies have demonstrated that terminally differentiated somatic cells can adopt a pluripotent state, or can directly convert its phenotype to neurons, after ectopic expression of transcription factors.
View Article and Find Full Text PDFThe neuromuscular junction (NMJ) is a specialized structure that works as an interface to translate the action potential of the presynaptic motor neuron (MN) in the contraction of the postsynaptic myofiber. The design of appropriate experimental models is essential to have efficient and reliable approaches to study NMJ development and function, but also to generate conditions that recapitulate distinct features of diseases. Initial studies relied on the use of tissue slices maintained under the same environment and in which single motor axons were difficult to trace.
View Article and Find Full Text PDFDuring midbrain development, dopamine neuron differentiation occurs before birth. Epigenetic processes such as DNA methylation and demethylation as well as post-translational modification of histones occur during neurogenesis. Here, we administered histamine (HA) into the brain of E12 embryos and observed significant lower immunoreactivity of Lmx1a+ and Tyrosine Hydroxylase (TH)+ cells, with parallel decreases in the expression of early (, and late () midbrain dopaminergic (mDA) genes.
View Article and Find Full Text PDFEmbryonic stem cells (ESC) are pluripotent and thus can differentiate into every cell type present in the body. Directed differentiation into motor neurons (MNs) has been described for pluripotent cells. Although neurotrophic factors promote neuronal survival, their role in neuronal commitment is elusive.
View Article and Find Full Text PDFBackground: Histamine (HA) regulates the sleep-wake cycle, synaptic plasticity and memory in adult mammals. Dopaminergic specification in the embryonic ventral midbrain (VM) coincides with increased HA brain levels. To study the effect of HA receptor stimulation on dopamine neuron generation, we administered HA to dopamine progenitors, both in vitro and in vivo.
View Article and Find Full Text PDFBackground: During rat development, histamine (HA) is one of the first neuroactive molecules to appear in the brain, reaching its maximal value at embryonic day 14, a period when neurogenesis of deep layers is occurring in the cerebral cortex, suggesting a role of this amine in neuronal specification. We previously reported, using high-density cerebrocortical neural precursor cultures, that micromolar HA enhanced the effect of fibroblast growth factor (FGF)-2 on proliferation, and that HA increased neuronal differentiation, due to HA type 1 receptor (H(1)R) activation.
Results: Clonal experiments performed here showed that HA decreased colony size and caused a significant increase in the percentage of clones containing mature neurons through H(1)R stimulation.