Publications by authors named "Itxaso Montanchez"

Global warming and acidification of the global ocean are two important manifestations of the ongoing climate change. To characterize their joint impact on adaptation and fitness, we analyzed the temperature-dependent adaptation of at different pHs (7.0, 7.

View Article and Find Full Text PDF

The type VI secretion system (T6SS) of Pseudomonas aeruginosa injects effector proteins into neighbouring competitors and host cells, providing a fitness advantage that allows this opportunistic nosocomial pathogen to persist and prevail during the onset of infections. However, despite the high clinical relevance of P. aeruginosa, the identity and mode of action of most P.

View Article and Find Full Text PDF

Laccases belong to a family of multicopper enzymes able to oxidize a broad spectrum of organic compounds. Despite the well-known property of laccases to carry out bleaching and degradation of industrial dyes and polyphenolic compounds, their industrial use is often limited by the high cost, low efficiency, or instability of these enzymes. To look for new microorganisms which produce laccases that are potentially suitable for industrial applications, we have isolated several fungal strains from a cave in northern Spain.

View Article and Find Full Text PDF

Recent reports indicate that the Type six secretion system exported effector 8 (Tse8) is a cytoactive effector secreted by the Type VI secretion system (T6SS) of the human pathogen Pseudomonas aeruginosa. The T6SS is a nanomachine that assembles inside of the bacteria and injects effectors/toxins into target cells, providing a fitness advantage over competing bacteria and facilitating host colonisation. Here we present the first crystal structure of Tse8 revealing that it conserves the architecture of the catalytic triad Lys84-transSer162-Ser186 that characterises members of the Amidase Signature superfamily.

View Article and Find Full Text PDF

Here we briefly review the major characteristics of the emerging pathogen Vibrio harveyi and discuss survival strategies and adaptation mechanisms underlying the capacity of this marine bacterium to thrive in natural and artificial aquatic settings. Recent studies suggest that some adaptation mechanisms can easily be acquired by V. harveyi and other members of the Vibrionaceae family owing to efficient horizontal gene transfer and elevated mutation rate.

View Article and Find Full Text PDF

Discovering the means to control the increasing dissemination of pathogenic vibrios driven by recent climate change is challenged by the limited knowledge of the mechanisms in charge of Vibrio spp. persistence and spread in the time of global warming. To learn about physiological and gene expression patterns associated with the long-term persistence of V.

View Article and Find Full Text PDF

The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc.

View Article and Find Full Text PDF

Polychlorinated aromatic compounds, including pentachlorobenzenes and hexachlorobenzenes, are recalcitrant industrial pollutants that cause adverse effects on living cells. In this paper, the isolation of Pseudomonas fluorescens species with high resistance to pentachlorobenzene (PeCB) is reported. It was found that, in contrast to its slightly negative effect on P.

View Article and Find Full Text PDF

Owing to their ubiquitous presence and ability to act as primary or opportunistic pathogens, Vibrio species greatly contribute to the diversity and evolution of marine ecosystems. This study was aimed at unveiling the cellular strategies enabling the marine gammaproteobacterium Vibrio harveyi to adapt and persist in natural aquatic systems. We found that, although V.

View Article and Find Full Text PDF

The life and survival of the marine bacterium Vibrio harveyi during its adaptation in natural aquatic systems is highly influenced by the availability of nutrients and temperature. To learn about adaptation strategies evolved by this bacterium to cope with drastic temperature downshifts and nutrients depletion, we have studied the phenotypical and gene expression changes occurring in V. harveyi during its adaptation to cold seawater.

View Article and Find Full Text PDF