Ligand-based virtual screening (LBVS) and structure-based virtual screening (SBVS), and their combinations, are frequently conducted in modern drug discovery campaigns. As a form of combination, an amalgamation of methods from ligand- and structure-based information, termed hybrid VS approaches, has been extensively investigated such as using interaction fingerprints (IFPs) in combination with machine learning (ML) models. This approach has the potential to prioritize active compounds in terms of protein-ligand binding and ligand structural characteristics, which is assumed to be difficult using either one of the approaches.
View Article and Find Full Text PDFScaffold-hopped (SH) compounds are bioactive compounds structurally different from known active compounds. Identifying SH compounds in the ligand-based approaches has been a central issue in medicinal chemistry, and various molecular representations of scaffold hopping have been proposed. However, appropriate representations for SH compound identification remain unclear.
View Article and Find Full Text PDFThe retrospective evaluation of virtual screening approaches and activity prediction models are important for methodological development. However, for fair comparison, evaluation data sets must be carefully prepared. In this research, we compiled structure-activity-relationship matrix-based data sets for 15 biological targets along with many diverse inactive compounds, assuming the early stage of structure-activity-relationship progression.
View Article and Find Full Text PDF